numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/clanhe.f | 8061B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
*> \brief \b CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CLANHE + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clanhe.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clanhe.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clanhe.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * REAL FUNCTION CLANHE( NORM, UPLO, N, A, LDA, WORK ) * * .. Scalar Arguments .. * CHARACTER NORM, UPLO * INTEGER LDA, N * .. * .. Array Arguments .. * REAL WORK( * ) * COMPLEX A( LDA, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CLANHE returns the value of the one norm, or the Frobenius norm, or *> the infinity norm, or the element of largest absolute value of a *> complex hermitian matrix A. *> \endverbatim *> *> \return CLANHE *> \verbatim *> *> CLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm' *> ( *> ( norm1(A), NORM = '1', 'O' or 'o' *> ( *> ( normI(A), NORM = 'I' or 'i' *> ( *> ( normF(A), NORM = 'F', 'f', 'E' or 'e' *> *> where norm1 denotes the one norm of a matrix (maximum column sum), *> normI denotes the infinity norm of a matrix (maximum row sum) and *> normF denotes the Frobenius norm of a matrix (square root of sum of *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. *> \endverbatim * * Arguments: * ========== * *> \param[in] NORM *> \verbatim *> NORM is CHARACTER*1 *> Specifies the value to be returned in CLANHE as described *> above. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the upper or lower triangular part of the *> hermitian matrix A is to be referenced. *> = 'U': Upper triangular part of A is referenced *> = 'L': Lower triangular part of A is referenced *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. When N = 0, CLANHE is *> set to zero. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> The hermitian matrix A. If UPLO = 'U', the leading n by n *> upper triangular part of A contains the upper triangular part *> of the matrix A, and the strictly lower triangular part of A *> is not referenced. If UPLO = 'L', the leading n by n lower *> triangular part of A contains the lower triangular part of *> the matrix A, and the strictly upper triangular part of A is *> not referenced. Note that the imaginary parts of the diagonal *> elements need not be set and are assumed to be zero. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(N,1). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (MAX(1,LWORK)), *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, *> WORK is not referenced. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup lanhe * * ===================================================================== REAL FUNCTION CLANHE( NORM, UPLO, N, A, LDA, WORK ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER NORM, UPLO INTEGER LDA, N * .. * .. Array Arguments .. REAL WORK( * ) COMPLEX A( LDA, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER I, J REAL ABSA, SCALE, SUM, VALUE * .. * .. External Functions .. LOGICAL LSAME, SISNAN EXTERNAL LSAME, SISNAN * .. * .. External Subroutines .. EXTERNAL CLASSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, REAL, SQRT * .. * .. Executable Statements .. * IF( N.EQ.0 ) THEN VALUE = ZERO ELSE IF( LSAME( NORM, 'M' ) ) THEN * * Find max(abs(A(i,j))). * VALUE = ZERO IF( LSAME( UPLO, 'U' ) ) THEN DO 20 J = 1, N DO 10 I = 1, J - 1 SUM = ABS( A( I, J ) ) IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM 10 CONTINUE SUM = ABS( REAL( A( J, J ) ) ) IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM 20 CONTINUE ELSE DO 40 J = 1, N SUM = ABS( REAL( A( J, J ) ) ) IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM DO 30 I = J + 1, N SUM = ABS( A( I, J ) ) IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM 30 CONTINUE 40 CONTINUE END IF ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. $ ( LSAME( NORM, 'O' ) ) .OR. $ ( NORM.EQ.'1' ) ) THEN * * Find normI(A) ( = norm1(A), since A is hermitian). * VALUE = ZERO IF( LSAME( UPLO, 'U' ) ) THEN DO 60 J = 1, N SUM = ZERO DO 50 I = 1, J - 1 ABSA = ABS( A( I, J ) ) SUM = SUM + ABSA WORK( I ) = WORK( I ) + ABSA 50 CONTINUE WORK( J ) = SUM + ABS( REAL( A( J, J ) ) ) 60 CONTINUE DO 70 I = 1, N SUM = WORK( I ) IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM 70 CONTINUE ELSE DO 80 I = 1, N WORK( I ) = ZERO 80 CONTINUE DO 100 J = 1, N SUM = WORK( J ) + ABS( REAL( A( J, J ) ) ) DO 90 I = J + 1, N ABSA = ABS( A( I, J ) ) SUM = SUM + ABSA WORK( I ) = WORK( I ) + ABSA 90 CONTINUE IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM 100 CONTINUE END IF ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. $ ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). * SCALE = ZERO SUM = ONE IF( LSAME( UPLO, 'U' ) ) THEN DO 110 J = 2, N CALL CLASSQ( J-1, A( 1, J ), 1, SCALE, SUM ) 110 CONTINUE ELSE DO 120 J = 1, N - 1 CALL CLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM ) 120 CONTINUE END IF SUM = 2*SUM DO 130 I = 1, N IF( REAL( A( I, I ) ).NE.ZERO ) THEN ABSA = ABS( REAL( A( I, I ) ) ) IF( SCALE.LT.ABSA ) THEN SUM = ONE + SUM*( SCALE / ABSA )**2 SCALE = ABSA ELSE SUM = SUM + ( ABSA / SCALE )**2 END IF END IF 130 CONTINUE VALUE = SCALE*SQRT( SUM ) END IF * CLANHE = VALUE RETURN * * End of CLANHE * END