numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/clar1v.f | 14690B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
*> \brief \b CLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CLAR1V + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clar1v.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clar1v.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clar1v.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD, * PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA, * R, ISUPPZ, NRMINV, RESID, RQCORR, WORK ) * * .. Scalar Arguments .. * LOGICAL WANTNC * INTEGER B1, BN, N, NEGCNT, R * REAL GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID, * $ RQCORR, ZTZ * .. * .. Array Arguments .. * INTEGER ISUPPZ( * ) * REAL D( * ), L( * ), LD( * ), LLD( * ), * $ WORK( * ) * COMPLEX Z( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CLAR1V computes the (scaled) r-th column of the inverse of *> the sumbmatrix in rows B1 through BN of the tridiagonal matrix *> L D L**T - sigma I. When sigma is close to an eigenvalue, the *> computed vector is an accurate eigenvector. Usually, r corresponds *> to the index where the eigenvector is largest in magnitude. *> The following steps accomplish this computation : *> (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T, *> (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T, *> (c) Computation of the diagonal elements of the inverse of *> L D L**T - sigma I by combining the above transforms, and choosing *> r as the index where the diagonal of the inverse is (one of the) *> largest in magnitude. *> (d) Computation of the (scaled) r-th column of the inverse using the *> twisted factorization obtained by combining the top part of the *> the stationary and the bottom part of the progressive transform. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix L D L**T. *> \endverbatim *> *> \param[in] B1 *> \verbatim *> B1 is INTEGER *> First index of the submatrix of L D L**T. *> \endverbatim *> *> \param[in] BN *> \verbatim *> BN is INTEGER *> Last index of the submatrix of L D L**T. *> \endverbatim *> *> \param[in] LAMBDA *> \verbatim *> LAMBDA is REAL *> The shift. In order to compute an accurate eigenvector, *> LAMBDA should be a good approximation to an eigenvalue *> of L D L**T. *> \endverbatim *> *> \param[in] L *> \verbatim *> L is REAL array, dimension (N-1) *> The (n-1) subdiagonal elements of the unit bidiagonal matrix *> L, in elements 1 to N-1. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is REAL array, dimension (N) *> The n diagonal elements of the diagonal matrix D. *> \endverbatim *> *> \param[in] LD *> \verbatim *> LD is REAL array, dimension (N-1) *> The n-1 elements L(i)*D(i). *> \endverbatim *> *> \param[in] LLD *> \verbatim *> LLD is REAL array, dimension (N-1) *> The n-1 elements L(i)*L(i)*D(i). *> \endverbatim *> *> \param[in] PIVMIN *> \verbatim *> PIVMIN is REAL *> The minimum pivot in the Sturm sequence. *> \endverbatim *> *> \param[in] GAPTOL *> \verbatim *> GAPTOL is REAL *> Tolerance that indicates when eigenvector entries are negligible *> w.r.t. their contribution to the residual. *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is COMPLEX array, dimension (N) *> On input, all entries of Z must be set to 0. *> On output, Z contains the (scaled) r-th column of the *> inverse. The scaling is such that Z(R) equals 1. *> \endverbatim *> *> \param[in] WANTNC *> \verbatim *> WANTNC is LOGICAL *> Specifies whether NEGCNT has to be computed. *> \endverbatim *> *> \param[out] NEGCNT *> \verbatim *> NEGCNT is INTEGER *> If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin *> in the matrix factorization L D L**T, and NEGCNT = -1 otherwise. *> \endverbatim *> *> \param[out] ZTZ *> \verbatim *> ZTZ is REAL *> The square of the 2-norm of Z. *> \endverbatim *> *> \param[out] MINGMA *> \verbatim *> MINGMA is REAL *> The reciprocal of the largest (in magnitude) diagonal *> element of the inverse of L D L**T - sigma I. *> \endverbatim *> *> \param[in,out] R *> \verbatim *> R is INTEGER *> The twist index for the twisted factorization used to *> compute Z. *> On input, 0 <= R <= N. If R is input as 0, R is set to *> the index where (L D L**T - sigma I)^{-1} is largest *> in magnitude. If 1 <= R <= N, R is unchanged. *> On output, R contains the twist index used to compute Z. *> Ideally, R designates the position of the maximum entry in the *> eigenvector. *> \endverbatim *> *> \param[out] ISUPPZ *> \verbatim *> ISUPPZ is INTEGER array, dimension (2) *> The support of the vector in Z, i.e., the vector Z is *> nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ). *> \endverbatim *> *> \param[out] NRMINV *> \verbatim *> NRMINV is REAL *> NRMINV = 1/SQRT( ZTZ ) *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is REAL *> The residual of the FP vector. *> RESID = ABS( MINGMA )/SQRT( ZTZ ) *> \endverbatim *> *> \param[out] RQCORR *> \verbatim *> RQCORR is REAL *> The Rayleigh Quotient correction to LAMBDA. *> RQCORR = MINGMA*TMP *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (4*N) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup lar1v * *> \par Contributors: * ================== *> *> Beresford Parlett, University of California, Berkeley, USA \n *> Jim Demmel, University of California, Berkeley, USA \n *> Inderjit Dhillon, University of Texas, Austin, USA \n *> Osni Marques, LBNL/NERSC, USA \n *> Christof Voemel, University of California, Berkeley, USA * * ===================================================================== SUBROUTINE CLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD, $ PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA, $ R, ISUPPZ, NRMINV, RESID, RQCORR, WORK ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL WANTNC INTEGER B1, BN, N, NEGCNT, R REAL GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID, $ RQCORR, ZTZ * .. * .. Array Arguments .. INTEGER ISUPPZ( * ) REAL D( * ), L( * ), LD( * ), LLD( * ), $ WORK( * ) COMPLEX Z( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) COMPLEX CONE PARAMETER ( CONE = ( 1.0E0, 0.0E0 ) ) * .. * .. Local Scalars .. LOGICAL SAWNAN1, SAWNAN2 INTEGER I, INDLPL, INDP, INDS, INDUMN, NEG1, NEG2, R1, $ R2 REAL DMINUS, DPLUS, EPS, S, TMP * .. * .. External Functions .. LOGICAL SISNAN REAL SLAMCH EXTERNAL SISNAN, SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, REAL * .. * .. Executable Statements .. * EPS = SLAMCH( 'Precision' ) IF( R.EQ.0 ) THEN R1 = B1 R2 = BN ELSE R1 = R R2 = R END IF * Storage for LPLUS INDLPL = 0 * Storage for UMINUS INDUMN = N INDS = 2*N + 1 INDP = 3*N + 1 IF( B1.EQ.1 ) THEN WORK( INDS ) = ZERO ELSE WORK( INDS+B1-1 ) = LLD( B1-1 ) END IF * * Compute the stationary transform (using the differential form) * until the index R2. * SAWNAN1 = .FALSE. NEG1 = 0 S = WORK( INDS+B1-1 ) - LAMBDA DO 50 I = B1, R1 - 1 DPLUS = D( I ) + S WORK( INDLPL+I ) = LD( I ) / DPLUS IF(DPLUS.LT.ZERO) NEG1 = NEG1 + 1 WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I ) S = WORK( INDS+I ) - LAMBDA 50 CONTINUE SAWNAN1 = SISNAN( S ) IF( SAWNAN1 ) GOTO 60 DO 51 I = R1, R2 - 1 DPLUS = D( I ) + S WORK( INDLPL+I ) = LD( I ) / DPLUS WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I ) S = WORK( INDS+I ) - LAMBDA 51 CONTINUE SAWNAN1 = SISNAN( S ) * 60 CONTINUE IF( SAWNAN1 ) THEN * Runs a slower version of the above loop if a NaN is detected NEG1 = 0 S = WORK( INDS+B1-1 ) - LAMBDA DO 70 I = B1, R1 - 1 DPLUS = D( I ) + S IF(ABS(DPLUS).LT.PIVMIN) DPLUS = -PIVMIN WORK( INDLPL+I ) = LD( I ) / DPLUS IF(DPLUS.LT.ZERO) NEG1 = NEG1 + 1 WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I ) IF( WORK( INDLPL+I ).EQ.ZERO ) $ WORK( INDS+I ) = LLD( I ) S = WORK( INDS+I ) - LAMBDA 70 CONTINUE DO 71 I = R1, R2 - 1 DPLUS = D( I ) + S IF(ABS(DPLUS).LT.PIVMIN) DPLUS = -PIVMIN WORK( INDLPL+I ) = LD( I ) / DPLUS WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I ) IF( WORK( INDLPL+I ).EQ.ZERO ) $ WORK( INDS+I ) = LLD( I ) S = WORK( INDS+I ) - LAMBDA 71 CONTINUE END IF * * Compute the progressive transform (using the differential form) * until the index R1 * SAWNAN2 = .FALSE. NEG2 = 0 WORK( INDP+BN-1 ) = D( BN ) - LAMBDA DO 80 I = BN - 1, R1, -1 DMINUS = LLD( I ) + WORK( INDP+I ) TMP = D( I ) / DMINUS IF(DMINUS.LT.ZERO) NEG2 = NEG2 + 1 WORK( INDUMN+I ) = L( I )*TMP WORK( INDP+I-1 ) = WORK( INDP+I )*TMP - LAMBDA 80 CONTINUE TMP = WORK( INDP+R1-1 ) SAWNAN2 = SISNAN( TMP ) IF( SAWNAN2 ) THEN * Runs a slower version of the above loop if a NaN is detected NEG2 = 0 DO 100 I = BN-1, R1, -1 DMINUS = LLD( I ) + WORK( INDP+I ) IF(ABS(DMINUS).LT.PIVMIN) DMINUS = -PIVMIN TMP = D( I ) / DMINUS IF(DMINUS.LT.ZERO) NEG2 = NEG2 + 1 WORK( INDUMN+I ) = L( I )*TMP WORK( INDP+I-1 ) = WORK( INDP+I )*TMP - LAMBDA IF( TMP.EQ.ZERO ) $ WORK( INDP+I-1 ) = D( I ) - LAMBDA 100 CONTINUE END IF * * Find the index (from R1 to R2) of the largest (in magnitude) * diagonal element of the inverse * MINGMA = WORK( INDS+R1-1 ) + WORK( INDP+R1-1 ) IF( MINGMA.LT.ZERO ) NEG1 = NEG1 + 1 IF( WANTNC ) THEN NEGCNT = NEG1 + NEG2 ELSE NEGCNT = -1 ENDIF IF( ABS(MINGMA).EQ.ZERO ) $ MINGMA = EPS*WORK( INDS+R1-1 ) R = R1 DO 110 I = R1, R2 - 1 TMP = WORK( INDS+I ) + WORK( INDP+I ) IF( TMP.EQ.ZERO ) $ TMP = EPS*WORK( INDS+I ) IF( ABS( TMP ).LE.ABS( MINGMA ) ) THEN MINGMA = TMP R = I + 1 END IF 110 CONTINUE * * Compute the FP vector: solve N^T v = e_r * ISUPPZ( 1 ) = B1 ISUPPZ( 2 ) = BN Z( R ) = CONE ZTZ = ONE * * Compute the FP vector upwards from R * IF( .NOT.SAWNAN1 .AND. .NOT.SAWNAN2 ) THEN DO 210 I = R-1, B1, -1 Z( I ) = -( WORK( INDLPL+I )*Z( I+1 ) ) IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL ) $ THEN Z( I ) = ZERO ISUPPZ( 1 ) = I + 1 GOTO 220 ENDIF ZTZ = ZTZ + REAL( Z( I )*Z( I ) ) 210 CONTINUE 220 CONTINUE ELSE * Run slower loop if NaN occurred. DO 230 I = R - 1, B1, -1 IF( Z( I+1 ).EQ.ZERO ) THEN Z( I ) = -( LD( I+1 ) / LD( I ) )*Z( I+2 ) ELSE Z( I ) = -( WORK( INDLPL+I )*Z( I+1 ) ) END IF IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL ) $ THEN Z( I ) = ZERO ISUPPZ( 1 ) = I + 1 GO TO 240 END IF ZTZ = ZTZ + REAL( Z( I )*Z( I ) ) 230 CONTINUE 240 CONTINUE ENDIF * Compute the FP vector downwards from R in blocks of size BLKSIZ IF( .NOT.SAWNAN1 .AND. .NOT.SAWNAN2 ) THEN DO 250 I = R, BN-1 Z( I+1 ) = -( WORK( INDUMN+I )*Z( I ) ) IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL ) $ THEN Z( I+1 ) = ZERO ISUPPZ( 2 ) = I GO TO 260 END IF ZTZ = ZTZ + REAL( Z( I+1 )*Z( I+1 ) ) 250 CONTINUE 260 CONTINUE ELSE * Run slower loop if NaN occurred. DO 270 I = R, BN - 1 IF( Z( I ).EQ.ZERO ) THEN Z( I+1 ) = -( LD( I-1 ) / LD( I ) )*Z( I-1 ) ELSE Z( I+1 ) = -( WORK( INDUMN+I )*Z( I ) ) END IF IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL ) $ THEN Z( I+1 ) = ZERO ISUPPZ( 2 ) = I GO TO 280 END IF ZTZ = ZTZ + REAL( Z( I+1 )*Z( I+1 ) ) 270 CONTINUE 280 CONTINUE END IF * * Compute quantities for convergence test * TMP = ONE / ZTZ NRMINV = SQRT( TMP ) RESID = ABS( MINGMA )*NRMINV RQCORR = MINGMA*TMP * * RETURN * * End of CLAR1V * END