numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/clarfgp.f | 7486B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
*> \brief \b CLARFGP generates an elementary reflector (Householder matrix) with non-negative beta. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CLARFGP + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfgp.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfgp.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfgp.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CLARFGP( N, ALPHA, X, INCX, TAU ) * * .. Scalar Arguments .. * INTEGER INCX, N * COMPLEX ALPHA, TAU * .. * .. Array Arguments .. * COMPLEX X( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CLARFGP generates a complex elementary reflector H of order n, such *> that *> *> H**H * ( alpha ) = ( beta ), H**H * H = I. *> ( x ) ( 0 ) *> *> where alpha and beta are scalars, beta is real and non-negative, and *> x is an (n-1)-element complex vector. H is represented in the form *> *> H = I - tau * ( 1 ) * ( 1 v**H ) , *> ( v ) *> *> where tau is a complex scalar and v is a complex (n-1)-element *> vector. Note that H is not hermitian. *> *> If the elements of x are all zero and alpha is real, then tau = 0 *> and H is taken to be the unit matrix. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the elementary reflector. *> \endverbatim *> *> \param[in,out] ALPHA *> \verbatim *> ALPHA is COMPLEX *> On entry, the value alpha. *> On exit, it is overwritten with the value beta. *> \endverbatim *> *> \param[in,out] X *> \verbatim *> X is COMPLEX array, dimension *> (1+(N-2)*abs(INCX)) *> On entry, the vector x. *> On exit, it is overwritten with the vector v. *> \endverbatim *> *> \param[in] INCX *> \verbatim *> INCX is INTEGER *> The increment between elements of X. INCX > 0. *> \endverbatim *> *> \param[out] TAU *> \verbatim *> TAU is COMPLEX *> The value tau. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup larfgp * * ===================================================================== SUBROUTINE CLARFGP( N, ALPHA, X, INCX, TAU ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INCX, N COMPLEX ALPHA, TAU * .. * .. Array Arguments .. COMPLEX X( * ) * .. * * ===================================================================== * * .. Parameters .. REAL TWO, ONE, ZERO PARAMETER ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER J, KNT REAL ALPHI, ALPHR, BETA, BIGNUM, EPS, SMLNUM, XNORM COMPLEX SAVEALPHA * .. * .. External Functions .. REAL SCNRM2, SLAMCH, SLAPY3, SLAPY2 COMPLEX CLADIV EXTERNAL SCNRM2, SLAMCH, SLAPY3, SLAPY2, $ CLADIV * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, CMPLX, REAL, SIGN * .. * .. External Subroutines .. EXTERNAL CSCAL, CSSCAL * .. * .. Executable Statements .. * IF( N.LE.0 ) THEN TAU = ZERO RETURN END IF * EPS = SLAMCH( 'Precision' ) XNORM = SCNRM2( N-1, X, INCX ) ALPHR = REAL( ALPHA ) ALPHI = AIMAG( ALPHA ) * IF( XNORM.LE.EPS*ABS(ALPHA) .AND. ALPHI.EQ.ZERO ) THEN * * H = [1-alpha/abs(alpha) 0; 0 I], sign chosen so ALPHA >= 0. * IF( ALPHR.GE.ZERO ) THEN * When TAU.eq.ZERO, the vector is special-cased to be * all zeros in the application routines. We do not need * to clear it. TAU = ZERO ELSE * However, the application routines rely on explicit * zero checks when TAU.ne.ZERO, and we must clear X. TAU = TWO DO J = 1, N-1 X( 1 + (J-1)*INCX ) = ZERO END DO ALPHA = -ALPHA END IF ELSE * * general case * BETA = SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'E' ) BIGNUM = ONE / SMLNUM * KNT = 0 IF( ABS( BETA ).LT.SMLNUM ) THEN * * XNORM, BETA may be inaccurate; scale X and recompute them * 10 CONTINUE KNT = KNT + 1 CALL CSSCAL( N-1, BIGNUM, X, INCX ) BETA = BETA*BIGNUM ALPHI = ALPHI*BIGNUM ALPHR = ALPHR*BIGNUM IF( (ABS( BETA ).LT.SMLNUM) .AND. (KNT .LT. 20) ) $ GO TO 10 * * New BETA is at most 1, at least SMLNUM * XNORM = SCNRM2( N-1, X, INCX ) ALPHA = CMPLX( ALPHR, ALPHI ) BETA = SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) END IF SAVEALPHA = ALPHA ALPHA = ALPHA + BETA IF( BETA.LT.ZERO ) THEN BETA = -BETA TAU = -ALPHA / BETA ELSE ALPHR = ALPHI * (ALPHI/REAL( ALPHA )) ALPHR = ALPHR + XNORM * (XNORM/REAL( ALPHA )) TAU = CMPLX( ALPHR/BETA, -ALPHI/BETA ) ALPHA = CMPLX( -ALPHR, ALPHI ) END IF ALPHA = CLADIV( CMPLX( ONE ), ALPHA ) * IF ( ABS(TAU).LE.SMLNUM ) THEN * * In the case where the computed TAU ends up being a denormalized number, * it loses relative accuracy. This is a BIG problem. Solution: flush TAU * to ZERO (or TWO or whatever makes a nonnegative real number for BETA). * * (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.) * (Thanks Pat. Thanks MathWorks.) * ALPHR = REAL( SAVEALPHA ) ALPHI = AIMAG( SAVEALPHA ) IF( ALPHI.EQ.ZERO ) THEN IF( ALPHR.GE.ZERO ) THEN TAU = ZERO ELSE TAU = TWO DO J = 1, N-1 X( 1 + (J-1)*INCX ) = ZERO END DO BETA = REAL( -SAVEALPHA ) END IF ELSE XNORM = SLAPY2( ALPHR, ALPHI ) TAU = CMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM ) DO J = 1, N-1 X( 1 + (J-1)*INCX ) = ZERO END DO BETA = XNORM END IF * ELSE * * This is the general case. * CALL CSCAL( N-1, ALPHA, X, INCX ) * END IF * * If BETA is subnormal, it may lose relative accuracy * DO 20 J = 1, KNT BETA = BETA*SMLNUM 20 CONTINUE ALPHA = BETA END IF * RETURN * * End of CLARFGP * END