numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/clasyf.f | 25982B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
*> \brief \b CLASYF computes a partial factorization of a complex symmetric matrix using the Bunch-Kaufman diagonal pivoting method. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CLASYF + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clasyf.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clasyf.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clasyf.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, KB, LDA, LDW, N, NB * .. * .. Array Arguments .. * INTEGER IPIV( * ) * COMPLEX A( LDA, * ), W( LDW, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CLASYF computes a partial factorization of a complex symmetric matrix *> A using the Bunch-Kaufman diagonal pivoting method. The partial *> factorization has the form: *> *> A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: *> ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) *> *> A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' *> ( L21 I ) ( 0 A22 ) ( 0 I ) *> *> where the order of D is at most NB. The actual order is returned in *> the argument KB, and is either NB or NB-1, or N if N <= NB. *> Note that U**T denotes the transpose of U. *> *> CLASYF is an auxiliary routine called by CSYTRF. It uses blocked code *> (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or *> A22 (if UPLO = 'L'). *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the upper or lower triangular part of the *> symmetric matrix A is stored: *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] NB *> \verbatim *> NB is INTEGER *> The maximum number of columns of the matrix A that should be *> factored. NB should be at least 2 to allow for 2-by-2 pivot *> blocks. *> \endverbatim *> *> \param[out] KB *> \verbatim *> KB is INTEGER *> The number of columns of A that were actually factored. *> KB is either NB-1 or NB, or N if N <= NB. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> On entry, the symmetric matrix A. If UPLO = 'U', the leading *> n-by-n upper triangular part of A contains the upper *> triangular part of the matrix A, and the strictly lower *> triangular part of A is not referenced. If UPLO = 'L', the *> leading n-by-n lower triangular part of A contains the lower *> triangular part of the matrix A, and the strictly upper *> triangular part of A is not referenced. *> On exit, A contains details of the partial factorization. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> Details of the interchanges and the block structure of D. *> *> If UPLO = 'U': *> Only the last KB elements of IPIV are set. *> *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were *> interchanged and D(k,k) is a 1-by-1 diagonal block. *> *> If IPIV(k) = IPIV(k-1) < 0, then rows and columns *> k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) *> is a 2-by-2 diagonal block. *> *> If UPLO = 'L': *> Only the first KB elements of IPIV are set. *> *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were *> interchanged and D(k,k) is a 1-by-1 diagonal block. *> *> If IPIV(k) = IPIV(k+1) < 0, then rows and columns *> k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) *> is a 2-by-2 diagonal block. *> \endverbatim *> *> \param[out] W *> \verbatim *> W is COMPLEX array, dimension (LDW,NB) *> \endverbatim *> *> \param[in] LDW *> \verbatim *> LDW is INTEGER *> The leading dimension of the array W. LDW >= max(1,N). *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> > 0: if INFO = k, D(k,k) is exactly zero. The factorization *> has been completed, but the block diagonal matrix D is *> exactly singular. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup lahef * *> \par Contributors: * ================== *> *> \verbatim *> *> November 2013, Igor Kozachenko, *> Computer Science Division, *> University of California, Berkeley *> \endverbatim * * ===================================================================== SUBROUTINE CLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, $ INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, KB, LDA, LDW, N, NB * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX A( LDA, * ), W( LDW, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) REAL EIGHT, SEVTEN PARAMETER ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 ) COMPLEX CONE PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER IMAX, J, JJ, JMAX, JP, K, KK, KKW, KP, $ KSTEP, KW REAL ABSAKK, ALPHA, COLMAX, ROWMAX COMPLEX D11, D21, D22, R1, T, Z * .. * .. External Functions .. LOGICAL LSAME INTEGER ICAMAX EXTERNAL LSAME, ICAMAX * .. * .. External Subroutines .. EXTERNAL CCOPY, CGEMMTR, CGEMV, CSCAL, CSWAP * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MAX, MIN, REAL, SQRT * .. * .. Statement Functions .. REAL CABS1 * .. * .. Statement Function definitions .. CABS1( Z ) = ABS( REAL( Z ) ) + ABS( AIMAG( Z ) ) * .. * .. Executable Statements .. * INFO = 0 * * Initialize ALPHA for use in choosing pivot block size. * ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT * IF( LSAME( UPLO, 'U' ) ) THEN * * Factorize the trailing columns of A using the upper triangle * of A and working backwards, and compute the matrix W = U12*D * for use in updating A11 * * K is the main loop index, decreasing from N in steps of 1 or 2 * * KW is the column of W which corresponds to column K of A * K = N 10 CONTINUE KW = NB + K - N * * Exit from loop * IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 ) $ GO TO 30 * * Copy column K of A to column KW of W and update it * CALL CCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 ) IF( K.LT.N ) $ CALL CGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), $ LDA, $ W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 ) * KSTEP = 1 * * Determine rows and columns to be interchanged and whether * a 1-by-1 or 2-by-2 pivot block will be used * ABSAKK = CABS1( W( K, KW ) ) * * IMAX is the row-index of the largest off-diagonal element in * column K, and COLMAX is its absolute value. * Determine both COLMAX and IMAX. * IF( K.GT.1 ) THEN IMAX = ICAMAX( K-1, W( 1, KW ), 1 ) COLMAX = CABS1( W( IMAX, KW ) ) ELSE COLMAX = ZERO END IF * IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN * * Column K is zero or underflow: set INFO and continue * IF( INFO.EQ.0 ) $ INFO = K KP = K ELSE IF( ABSAKK.GE.ALPHA*COLMAX ) THEN * * no interchange, use 1-by-1 pivot block * KP = K ELSE * * Copy column IMAX to column KW-1 of W and update it * CALL CCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 ) CALL CCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA, $ W( IMAX+1, KW-1 ), 1 ) IF( K.LT.N ) $ CALL CGEMV( 'No transpose', K, N-K, -CONE, $ A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW, $ CONE, W( 1, KW-1 ), 1 ) * * JMAX is the column-index of the largest off-diagonal * element in row IMAX, and ROWMAX is its absolute value * JMAX = IMAX + ICAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 ) ROWMAX = CABS1( W( JMAX, KW-1 ) ) IF( IMAX.GT.1 ) THEN JMAX = ICAMAX( IMAX-1, W( 1, KW-1 ), 1 ) ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, KW-1 ) ) ) END IF * IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN * * no interchange, use 1-by-1 pivot block * KP = K ELSE IF( CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX ) THEN * * interchange rows and columns K and IMAX, use 1-by-1 * pivot block * KP = IMAX * * copy column KW-1 of W to column KW of W * CALL CCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 ) ELSE * * interchange rows and columns K-1 and IMAX, use 2-by-2 * pivot block * KP = IMAX KSTEP = 2 END IF END IF * * ============================================================ * * KK is the column of A where pivoting step stopped * KK = K - KSTEP + 1 * * KKW is the column of W which corresponds to column KK of A * KKW = NB + KK - N * * Interchange rows and columns KP and KK. * Updated column KP is already stored in column KKW of W. * IF( KP.NE.KK ) THEN * * Copy non-updated column KK to column KP of submatrix A * at step K. No need to copy element into column K * (or K and K-1 for 2-by-2 pivot) of A, since these columns * will be later overwritten. * A( KP, KP ) = A( KK, KK ) CALL CCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ), $ LDA ) IF( KP.GT.1 ) $ CALL CCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 ) * * Interchange rows KK and KP in last K+1 to N columns of A * (columns K (or K and K-1 for 2-by-2 pivot) of A will be * later overwritten). Interchange rows KK and KP * in last KKW to NB columns of W. * IF( K.LT.N ) $ CALL CSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ), $ LDA ) CALL CSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ), $ LDW ) END IF * IF( KSTEP.EQ.1 ) THEN * * 1-by-1 pivot block D(k): column kw of W now holds * * W(kw) = U(k)*D(k), * * where U(k) is the k-th column of U * * Store subdiag. elements of column U(k) * and 1-by-1 block D(k) in column k of A. * NOTE: Diagonal element U(k,k) is a UNIT element * and not stored. * A(k,k) := D(k,k) = W(k,kw) * A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k) * CALL CCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 ) R1 = CONE / A( K, K ) CALL CSCAL( K-1, R1, A( 1, K ), 1 ) * ELSE * * 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold * * ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k) * * where U(k) and U(k-1) are the k-th and (k-1)-th columns * of U * * Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2 * block D(k-1:k,k-1:k) in columns k-1 and k of A. * NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT * block and not stored. * A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw) * A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) = * = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) ) * IF( K.GT.2 ) THEN * * Compose the columns of the inverse of 2-by-2 pivot * block D in the following way to reduce the number * of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by * this inverse * * D**(-1) = ( d11 d21 )**(-1) = * ( d21 d22 ) * * = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = * ( (-d21 ) ( d11 ) ) * * = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * * * * ( ( d22/d21 ) ( -1 ) ) = * ( ( -1 ) ( d11/d21 ) ) * * = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) ( -1 ) ) = * ( ( -1 ) ( D22 ) ) * * = 1/d21 * T * ( ( D11 ) ( -1 ) ) * ( ( -1 ) ( D22 ) ) * * = D21 * ( ( D11 ) ( -1 ) ) * ( ( -1 ) ( D22 ) ) * D21 = W( K-1, KW ) D11 = W( K, KW ) / D21 D22 = W( K-1, KW-1 ) / D21 T = CONE / ( D11*D22-CONE ) * * Update elements in columns A(k-1) and A(k) as * dot products of rows of ( W(kw-1) W(kw) ) and columns * of D**(-1) * D21 = T / D21 DO 20 J = 1, K - 2 A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) ) A( J, K ) = D21*( D22*W( J, KW )-W( J, KW-1 ) ) 20 CONTINUE END IF * * Copy D(k) to A * A( K-1, K-1 ) = W( K-1, KW-1 ) A( K-1, K ) = W( K-1, KW ) A( K, K ) = W( K, KW ) * END IF * END IF * * Store details of the interchanges in IPIV * IF( KSTEP.EQ.1 ) THEN IPIV( K ) = KP ELSE IPIV( K ) = -KP IPIV( K-1 ) = -KP END IF * * Decrease K and return to the start of the main loop * K = K - KSTEP GO TO 10 * 30 CONTINUE * * Update the upper triangle of A11 (= A(1:k,1:k)) as * * A11 := A11 - U12*D*U12**T = A11 - U12*W**T * CALL CGEMMTR( 'Upper', 'No transpose', 'Transpose', K, N-K, $ -CONE, A( 1, K+1 ), LDA, W( 1, KW+1 ), LDW, $ CONE, A( 1, 1 ), LDA ) * * Put U12 in standard form by partially undoing the interchanges * in columns k+1:n looping backwards from k+1 to n * J = K + 1 60 CONTINUE * * Undo the interchanges (if any) of rows JJ and JP at each * step J * * (Here, J is a diagonal index) JJ = J JP = IPIV( J ) IF( JP.LT.0 ) THEN JP = -JP * (Here, J is a diagonal index) J = J + 1 END IF * (NOTE: Here, J is used to determine row length. Length N-J+1 * of the rows to swap back doesn't include diagonal element) J = J + 1 IF( JP.NE.JJ .AND. J.LE.N ) $ CALL CSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA ) IF( J.LT.N ) $ GO TO 60 * * Set KB to the number of columns factorized * KB = N - K * ELSE * * Factorize the leading columns of A using the lower triangle * of A and working forwards, and compute the matrix W = L21*D * for use in updating A22 * * K is the main loop index, increasing from 1 in steps of 1 or 2 * K = 1 70 CONTINUE * * Exit from loop * IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N ) $ GO TO 90 * * Copy column K of A to column K of W and update it * CALL CCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 ) CALL CGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ), $ LDA, $ W( K, 1 ), LDW, CONE, W( K, K ), 1 ) * KSTEP = 1 * * Determine rows and columns to be interchanged and whether * a 1-by-1 or 2-by-2 pivot block will be used * ABSAKK = CABS1( W( K, K ) ) * * IMAX is the row-index of the largest off-diagonal element in * column K, and COLMAX is its absolute value. * Determine both COLMAX and IMAX. * IF( K.LT.N ) THEN IMAX = K + ICAMAX( N-K, W( K+1, K ), 1 ) COLMAX = CABS1( W( IMAX, K ) ) ELSE COLMAX = ZERO END IF * IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN * * Column K is zero or underflow: set INFO and continue * IF( INFO.EQ.0 ) $ INFO = K KP = K ELSE IF( ABSAKK.GE.ALPHA*COLMAX ) THEN * * no interchange, use 1-by-1 pivot block * KP = K ELSE * * Copy column IMAX to column K+1 of W and update it * CALL CCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), $ 1 ) CALL CCOPY( N-IMAX+1, A( IMAX, IMAX ), 1, W( IMAX, $ K+1 ), $ 1 ) CALL CGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, $ 1 ), $ LDA, W( IMAX, 1 ), LDW, CONE, W( K, K+1 ), $ 1 ) * * JMAX is the column-index of the largest off-diagonal * element in row IMAX, and ROWMAX is its absolute value * JMAX = K - 1 + ICAMAX( IMAX-K, W( K, K+1 ), 1 ) ROWMAX = CABS1( W( JMAX, K+1 ) ) IF( IMAX.LT.N ) THEN JMAX = IMAX + ICAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 ) ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, K+1 ) ) ) END IF * IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN * * no interchange, use 1-by-1 pivot block * KP = K ELSE IF( CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX ) THEN * * interchange rows and columns K and IMAX, use 1-by-1 * pivot block * KP = IMAX * * copy column K+1 of W to column K of W * CALL CCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 ) ELSE * * interchange rows and columns K+1 and IMAX, use 2-by-2 * pivot block * KP = IMAX KSTEP = 2 END IF END IF * * ============================================================ * * KK is the column of A where pivoting step stopped * KK = K + KSTEP - 1 * * Interchange rows and columns KP and KK. * Updated column KP is already stored in column KK of W. * IF( KP.NE.KK ) THEN * * Copy non-updated column KK to column KP of submatrix A * at step K. No need to copy element into column K * (or K and K+1 for 2-by-2 pivot) of A, since these columns * will be later overwritten. * A( KP, KP ) = A( KK, KK ) CALL CCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ), $ LDA ) IF( KP.LT.N ) $ CALL CCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), $ 1 ) * * Interchange rows KK and KP in first K-1 columns of A * (columns K (or K and K+1 for 2-by-2 pivot) of A will be * later overwritten). Interchange rows KK and KP * in first KK columns of W. * IF( K.GT.1 ) $ CALL CSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA ) CALL CSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW ) END IF * IF( KSTEP.EQ.1 ) THEN * * 1-by-1 pivot block D(k): column k of W now holds * * W(k) = L(k)*D(k), * * where L(k) is the k-th column of L * * Store subdiag. elements of column L(k) * and 1-by-1 block D(k) in column k of A. * (NOTE: Diagonal element L(k,k) is a UNIT element * and not stored) * A(k,k) := D(k,k) = W(k,k) * A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k) * CALL CCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 ) IF( K.LT.N ) THEN R1 = CONE / A( K, K ) CALL CSCAL( N-K, R1, A( K+1, K ), 1 ) END IF * ELSE * * 2-by-2 pivot block D(k): columns k and k+1 of W now hold * * ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) * * where L(k) and L(k+1) are the k-th and (k+1)-th columns * of L * * Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2 * block D(k:k+1,k:k+1) in columns k and k+1 of A. * (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT * block and not stored) * A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1) * A(k+2:N,k:k+1) := L(k+2:N,k:k+1) = * = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) ) * IF( K.LT.N-1 ) THEN * * Compose the columns of the inverse of 2-by-2 pivot * block D in the following way to reduce the number * of FLOPS when we myltiply panel ( W(k) W(k+1) ) by * this inverse * * D**(-1) = ( d11 d21 )**(-1) = * ( d21 d22 ) * * = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = * ( (-d21 ) ( d11 ) ) * * = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * * * * ( ( d22/d21 ) ( -1 ) ) = * ( ( -1 ) ( d11/d21 ) ) * * = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) ( -1 ) ) = * ( ( -1 ) ( D22 ) ) * * = 1/d21 * T * ( ( D11 ) ( -1 ) ) * ( ( -1 ) ( D22 ) ) * * = D21 * ( ( D11 ) ( -1 ) ) * ( ( -1 ) ( D22 ) ) * D21 = W( K+1, K ) D11 = W( K+1, K+1 ) / D21 D22 = W( K, K ) / D21 T = CONE / ( D11*D22-CONE ) D21 = T / D21 * * Update elements in columns A(k) and A(k+1) as * dot products of rows of ( W(k) W(k+1) ) and columns * of D**(-1) * DO 80 J = K + 2, N A( J, K ) = D21*( D11*W( J, K )-W( J, K+1 ) ) A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) ) 80 CONTINUE END IF * * Copy D(k) to A * A( K, K ) = W( K, K ) A( K+1, K ) = W( K+1, K ) A( K+1, K+1 ) = W( K+1, K+1 ) * END IF * END IF * * Store details of the interchanges in IPIV * IF( KSTEP.EQ.1 ) THEN IPIV( K ) = KP ELSE IPIV( K ) = -KP IPIV( K+1 ) = -KP END IF * * Increase K and return to the start of the main loop * K = K + KSTEP GO TO 70 * 90 CONTINUE * * Update the lower triangle of A22 (= A(k:n,k:n)) as * * A22 := A22 - L21*D*L21**T = A22 - L21*W**T * CALL CGEMMTR( 'Lower', 'No transpose', 'Transpose', N-K+1, $ K-1, -CONE, A( K, 1 ), LDA, W( K, 1 ), LDW, $ CONE, A( K, K ), LDA ) * * Put L21 in standard form by partially undoing the interchanges * of rows in columns 1:k-1 looping backwards from k-1 to 1 * J = K - 1 120 CONTINUE * * Undo the interchanges (if any) of rows JJ and JP at each * step J * * (Here, J is a diagonal index) JJ = J JP = IPIV( J ) IF( JP.LT.0 ) THEN JP = -JP * (Here, J is a diagonal index) J = J - 1 END IF * (NOTE: Here, J is used to determine row length. Length J * of the rows to swap back doesn't include diagonal element) J = J - 1 IF( JP.NE.JJ .AND. J.GE.1 ) $ CALL CSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA ) IF( J.GT.1 ) $ GO TO 120 * * Set KB to the number of columns factorized * KB = K - 1 * END IF RETURN * * End of CLASYF * END