numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/cptts2.f | 6813B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
*> \brief \b CPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CPTTS2 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cptts2.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cptts2.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cptts2.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CPTTS2( IUPLO, N, NRHS, D, E, B, LDB ) * * .. Scalar Arguments .. * INTEGER IUPLO, LDB, N, NRHS * .. * .. Array Arguments .. * REAL D( * ) * COMPLEX B( LDB, * ), E( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CPTTS2 solves a tridiagonal system of the form *> A * X = B *> using the factorization A = U**H*D*U or A = L*D*L**H computed by CPTTRF. *> D is a diagonal matrix specified in the vector D, U (or L) is a unit *> bidiagonal matrix whose superdiagonal (subdiagonal) is specified in *> the vector E, and X and B are N by NRHS matrices. *> \endverbatim * * Arguments: * ========== * *> \param[in] IUPLO *> \verbatim *> IUPLO is INTEGER *> Specifies the form of the factorization and whether the *> vector E is the superdiagonal of the upper bidiagonal factor *> U or the subdiagonal of the lower bidiagonal factor L. *> = 1: A = U**H *D*U, E is the superdiagonal of U *> = 0: A = L*D*L**H, E is the subdiagonal of L *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the tridiagonal matrix A. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of the matrix B. NRHS >= 0. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is REAL array, dimension (N) *> The n diagonal elements of the diagonal matrix D from the *> factorization A = U**H *D*U or A = L*D*L**H. *> \endverbatim *> *> \param[in] E *> \verbatim *> E is COMPLEX array, dimension (N-1) *> If IUPLO = 1, the (n-1) superdiagonal elements of the unit *> bidiagonal factor U from the factorization A = U**H*D*U. *> If IUPLO = 0, the (n-1) subdiagonal elements of the unit *> bidiagonal factor L from the factorization A = L*D*L**H. *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX array, dimension (LDB,NRHS) *> On entry, the right hand side vectors B for the system of *> linear equations. *> On exit, the solution vectors, X. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup ptts2 * * ===================================================================== SUBROUTINE CPTTS2( IUPLO, N, NRHS, D, E, B, LDB ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER IUPLO, LDB, N, NRHS * .. * .. Array Arguments .. REAL D( * ) COMPLEX B( LDB, * ), E( * ) * .. * * ===================================================================== * * .. Local Scalars .. INTEGER I, J * .. * .. External Subroutines .. EXTERNAL CSSCAL * .. * .. Intrinsic Functions .. INTRINSIC CONJG * .. * .. Executable Statements .. * * Quick return if possible * IF( N.LE.1 ) THEN IF( N.EQ.1 ) $ CALL CSSCAL( NRHS, 1. / D( 1 ), B, LDB ) RETURN END IF * IF( IUPLO.EQ.1 ) THEN * * Solve A * X = B using the factorization A = U**H *D*U, * overwriting each right hand side vector with its solution. * IF( NRHS.LE.2 ) THEN J = 1 5 CONTINUE * * Solve U**H * x = b. * DO 10 I = 2, N B( I, J ) = B( I, J ) - B( I-1, J )*CONJG( E( I-1 ) ) 10 CONTINUE * * Solve D * U * x = b. * DO 20 I = 1, N B( I, J ) = B( I, J ) / D( I ) 20 CONTINUE DO 30 I = N - 1, 1, -1 B( I, J ) = B( I, J ) - B( I+1, J )*E( I ) 30 CONTINUE IF( J.LT.NRHS ) THEN J = J + 1 GO TO 5 END IF ELSE DO 60 J = 1, NRHS * * Solve U**H * x = b. * DO 40 I = 2, N B( I, J ) = B( I, J ) - B( I-1, J )*CONJG( E( I-1 ) ) 40 CONTINUE * * Solve D * U * x = b. * B( N, J ) = B( N, J ) / D( N ) DO 50 I = N - 1, 1, -1 B( I, J ) = B( I, J ) / D( I ) - B( I+1, J )*E( I ) 50 CONTINUE 60 CONTINUE END IF ELSE * * Solve A * X = B using the factorization A = L*D*L**H, * overwriting each right hand side vector with its solution. * IF( NRHS.LE.2 ) THEN J = 1 65 CONTINUE * * Solve L * x = b. * DO 70 I = 2, N B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 ) 70 CONTINUE * * Solve D * L**H * x = b. * DO 80 I = 1, N B( I, J ) = B( I, J ) / D( I ) 80 CONTINUE DO 90 I = N - 1, 1, -1 B( I, J ) = B( I, J ) - B( I+1, J )*CONJG( E( I ) ) 90 CONTINUE IF( J.LT.NRHS ) THEN J = J + 1 GO TO 65 END IF ELSE DO 120 J = 1, NRHS * * Solve L * x = b. * DO 100 I = 2, N B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 ) 100 CONTINUE * * Solve D * L**H * x = b. * B( N, J ) = B( N, J ) / D( N ) DO 110 I = N - 1, 1, -1 B( I, J ) = B( I, J ) / D( I ) - $ B( I+1, J )*CONJG( E( I ) ) 110 CONTINUE 120 CONTINUE END IF END IF * RETURN * * End of CPTTS2 * END