numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/crscl.f | 6332B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
*> \brief \b CRSCL multiplies a vector by the reciprocal of a real scalar. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CRSCL + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/crscl.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/crscl.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/crscl.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CRSCL( N, A, X, INCX ) * * .. Scalar Arguments .. * INTEGER INCX, N * COMPLEX A * .. * .. Array Arguments .. * COMPLEX X( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CRSCL multiplies an n-element complex vector x by the complex scalar *> 1/a. This is done without overflow or underflow as long as *> the final result x/a does not overflow or underflow. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The number of components of the vector x. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX *> The scalar a which is used to divide each component of x. *> A must not be 0, or the subroutine will divide by zero. *> \endverbatim *> *> \param[in,out] X *> \verbatim *> X is COMPLEX array, dimension *> (1+(N-1)*abs(INCX)) *> The n-element vector x. *> \endverbatim *> *> \param[in] INCX *> \verbatim *> INCX is INTEGER *> The increment between successive values of the vector X. *> > 0: X(1) = X(1) and X(1+(i-1)*INCX) = x(i), 1< i<= n *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complexOTHERauxiliary * * ===================================================================== SUBROUTINE CRSCL( N, A, X, INCX ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INCX, N COMPLEX A * .. * .. Array Arguments .. COMPLEX X( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. REAL SAFMAX, SAFMIN, OV, AR, AI, ABSR, ABSI, UR % , UI * .. * .. External Functions .. REAL SLAMCH COMPLEX CLADIV EXTERNAL SLAMCH, CLADIV * .. * .. External Subroutines .. EXTERNAL CSCAL, CSSCAL, CSRSCL * .. * .. Intrinsic Functions .. INTRINSIC ABS * .. * .. Executable Statements .. * * Quick return if possible * IF( N.LE.0 ) $ RETURN * * Get machine parameters * SAFMIN = SLAMCH( 'S' ) SAFMAX = ONE / SAFMIN OV = SLAMCH( 'O' ) * * Initialize constants related to A. * AR = REAL( A ) AI = AIMAG( A ) ABSR = ABS( AR ) ABSI = ABS( AI ) * IF( AI.EQ.ZERO ) THEN * If alpha is real, then we can use csrscl CALL CSRSCL( N, AR, X, INCX ) * ELSE IF( AR.EQ.ZERO ) THEN * If alpha has a zero real part, then we follow the same rules as if * alpha were real. IF( ABSI.GT.SAFMAX ) THEN CALL CSSCAL( N, SAFMIN, X, INCX ) CALL CSCAL( N, CMPLX( ZERO, -SAFMAX / AI ), X, INCX ) ELSE IF( ABSI.LT.SAFMIN ) THEN CALL CSCAL( N, CMPLX( ZERO, -SAFMIN / AI ), X, INCX ) CALL CSSCAL( N, SAFMAX, X, INCX ) ELSE CALL CSCAL( N, CMPLX( ZERO, -ONE / AI ), X, INCX ) END IF * ELSE * The following numbers can be computed. * They are the inverse of the real and imaginary parts of 1/alpha. * Note that a and b are always different from zero. * NaNs are only possible if either: * 1. alphaR or alphaI is NaN. * 2. alphaR and alphaI are both infinite, in which case it makes sense * to propagate a NaN. UR = AR + AI * ( AI / AR ) UI = AI + AR * ( AR / AI ) * IF( (ABS( UR ).LT.SAFMIN).OR.(ABS( UI ).LT.SAFMIN) ) THEN * This means that both alphaR and alphaI are very small. CALL CSCAL( N, CMPLX( SAFMIN / UR, -SAFMIN / UI ), X, $ INCX ) CALL CSSCAL( N, SAFMAX, X, INCX ) ELSE IF( (ABS( UR ).GT.SAFMAX).OR.(ABS( UI ).GT.SAFMAX) ) THEN IF( (ABSR.GT.OV).OR.(ABSI.GT.OV) ) THEN * This means that a and b are both Inf. No need for scaling. CALL CSCAL( N, CMPLX( ONE / UR, -ONE / UI ), X, INCX ) ELSE CALL CSSCAL( N, SAFMIN, X, INCX ) IF( (ABS( UR ).GT.OV).OR.(ABS( UI ).GT.OV) ) THEN * Infs were generated. We do proper scaling to avoid them. IF( ABSR.GE.ABSI ) THEN * ABS( UR ) <= ABS( UI ) UR = (SAFMIN * AR) + SAFMIN * (AI * ( AI / AR )) UI = (SAFMIN * AI) + AR * ( (SAFMIN * AR) / AI ) ELSE * ABS( UR ) > ABS( UI ) UR = (SAFMIN * AR) + AI * ( (SAFMIN * AI) / AR ) UI = (SAFMIN * AI) + SAFMIN * (AR * ( AR / AI )) END IF CALL CSCAL( N, CMPLX( ONE / UR, -ONE / UI ), X, $ INCX ) ELSE CALL CSCAL( N, CMPLX( SAFMAX / UR, -SAFMAX / UI ), $ X, INCX ) END IF END IF ELSE CALL CSCAL( N, CMPLX( ONE / UR, -ONE / UI ), X, INCX ) END IF END IF * RETURN * * End of CRSCL * END