numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/csprfs.f | 13419B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
*> \brief \b CSPRFS * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CSPRFS + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csprfs.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csprfs.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csprfs.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, * FERR, BERR, WORK, RWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, LDB, LDX, N, NRHS * .. * .. Array Arguments .. * INTEGER IPIV( * ) * REAL BERR( * ), FERR( * ), RWORK( * ) * COMPLEX AFP( * ), AP( * ), B( LDB, * ), WORK( * ), * $ X( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CSPRFS improves the computed solution to a system of linear *> equations when the coefficient matrix is symmetric indefinite *> and packed, and provides error bounds and backward error estimates *> for the solution. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangle of A is stored; *> = 'L': Lower triangle of A is stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of the matrices B and X. NRHS >= 0. *> \endverbatim *> *> \param[in] AP *> \verbatim *> AP is COMPLEX array, dimension (N*(N+1)/2) *> The upper or lower triangle of the symmetric matrix A, packed *> columnwise in a linear array. The j-th column of A is stored *> in the array AP as follows: *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. *> \endverbatim *> *> \param[in] AFP *> \verbatim *> AFP is COMPLEX array, dimension (N*(N+1)/2) *> The factored form of the matrix A. AFP contains the block *> diagonal matrix D and the multipliers used to obtain the *> factor U or L from the factorization A = U*D*U**T or *> A = L*D*L**T as computed by CSPTRF, stored as a packed *> triangular matrix. *> \endverbatim *> *> \param[in] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> Details of the interchanges and the block structure of D *> as determined by CSPTRF. *> \endverbatim *> *> \param[in] B *> \verbatim *> B is COMPLEX array, dimension (LDB,NRHS) *> The right hand side matrix B. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[in,out] X *> \verbatim *> X is COMPLEX array, dimension (LDX,NRHS) *> On entry, the solution matrix X, as computed by CSPTRS. *> On exit, the improved solution matrix X. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. LDX >= max(1,N). *> \endverbatim *> *> \param[out] FERR *> \verbatim *> FERR is REAL array, dimension (NRHS) *> The estimated forward error bound for each solution vector *> X(j) (the j-th column of the solution matrix X). *> If XTRUE is the true solution corresponding to X(j), FERR(j) *> is an estimated upper bound for the magnitude of the largest *> element in (X(j) - XTRUE) divided by the magnitude of the *> largest element in X(j). The estimate is as reliable as *> the estimate for RCOND, and is almost always a slight *> overestimate of the true error. *> \endverbatim *> *> \param[out] BERR *> \verbatim *> BERR is REAL array, dimension (NRHS) *> The componentwise relative backward error of each solution *> vector X(j) (i.e., the smallest relative change in *> any element of A or B that makes X(j) an exact solution). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (2*N) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * *> \par Internal Parameters: * ========================= *> *> \verbatim *> ITMAX is the maximum number of steps of iterative refinement. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup hprfs * * ===================================================================== SUBROUTINE CSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, $ LDX, $ FERR, BERR, WORK, RWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDB, LDX, N, NRHS * .. * .. Array Arguments .. INTEGER IPIV( * ) REAL BERR( * ), FERR( * ), RWORK( * ) COMPLEX AFP( * ), AP( * ), B( LDB, * ), WORK( * ), $ X( LDX, * ) * .. * * ===================================================================== * * .. Parameters .. INTEGER ITMAX PARAMETER ( ITMAX = 5 ) REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) COMPLEX ONE PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) ) REAL TWO PARAMETER ( TWO = 2.0E+0 ) REAL THREE PARAMETER ( THREE = 3.0E+0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER COUNT, I, IK, J, K, KASE, KK, NZ REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK COMPLEX ZDUM * .. * .. Local Arrays .. INTEGER ISAVE( 3 ) * .. * .. External Subroutines .. EXTERNAL CAXPY, CCOPY, CLACN2, CSPMV, CSPTRS, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MAX, REAL * .. * .. External Functions .. LOGICAL LSAME REAL SLAMCH EXTERNAL LSAME, SLAMCH * .. * .. Statement Functions .. REAL CABS1 * .. * .. Statement Function definitions .. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) ) * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( NRHS.LT.0 ) THEN INFO = -3 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -10 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CSPRFS', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN DO 10 J = 1, NRHS FERR( J ) = ZERO BERR( J ) = ZERO 10 CONTINUE RETURN END IF * * NZ = maximum number of nonzero elements in each row of A, plus 1 * NZ = N + 1 EPS = SLAMCH( 'Epsilon' ) SAFMIN = SLAMCH( 'Safe minimum' ) SAFE1 = REAL( NZ )*SAFMIN SAFE2 = SAFE1 / EPS * * Do for each right hand side * DO 140 J = 1, NRHS * COUNT = 1 LSTRES = THREE 20 CONTINUE * * Loop until stopping criterion is satisfied. * * Compute residual R = B - A * X * CALL CCOPY( N, B( 1, J ), 1, WORK, 1 ) CALL CSPMV( UPLO, N, -ONE, AP, X( 1, J ), 1, ONE, WORK, 1 ) * * Compute componentwise relative backward error from formula * * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) * * where abs(Z) is the componentwise absolute value of the matrix * or vector Z. If the i-th component of the denominator is less * than SAFE2, then SAFE1 is added to the i-th components of the * numerator and denominator before dividing. * DO 30 I = 1, N RWORK( I ) = CABS1( B( I, J ) ) 30 CONTINUE * * Compute abs(A)*abs(X) + abs(B). * KK = 1 IF( UPPER ) THEN DO 50 K = 1, N S = ZERO XK = CABS1( X( K, J ) ) IK = KK DO 40 I = 1, K - 1 RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) ) IK = IK + 1 40 CONTINUE RWORK( K ) = RWORK( K ) + CABS1( AP( KK+K-1 ) )*XK + S KK = KK + K 50 CONTINUE ELSE DO 70 K = 1, N S = ZERO XK = CABS1( X( K, J ) ) RWORK( K ) = RWORK( K ) + CABS1( AP( KK ) )*XK IK = KK + 1 DO 60 I = K + 1, N RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) ) IK = IK + 1 60 CONTINUE RWORK( K ) = RWORK( K ) + S KK = KK + ( N-K+1 ) 70 CONTINUE END IF S = ZERO DO 80 I = 1, N IF( RWORK( I ).GT.SAFE2 ) THEN S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) ) ELSE S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) / $ ( RWORK( I )+SAFE1 ) ) END IF 80 CONTINUE BERR( J ) = S * * Test stopping criterion. Continue iterating if * 1) The residual BERR(J) is larger than machine epsilon, and * 2) BERR(J) decreased by at least a factor of 2 during the * last iteration, and * 3) At most ITMAX iterations tried. * IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND. $ COUNT.LE.ITMAX ) THEN * * Update solution and try again. * CALL CSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO ) CALL CAXPY( N, ONE, WORK, 1, X( 1, J ), 1 ) LSTRES = BERR( J ) COUNT = COUNT + 1 GO TO 20 END IF * * Bound error from formula * * norm(X - XTRUE) / norm(X) .le. FERR = * norm( abs(inv(A))* * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) * * where * norm(Z) is the magnitude of the largest component of Z * inv(A) is the inverse of A * abs(Z) is the componentwise absolute value of the matrix or * vector Z * NZ is the maximum number of nonzeros in any row of A, plus 1 * EPS is machine epsilon * * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) * is incremented by SAFE1 if the i-th component of * abs(A)*abs(X) + abs(B) is less than SAFE2. * * Use CLACN2 to estimate the infinity-norm of the matrix * inv(A) * diag(W), * where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) * DO 90 I = 1, N IF( RWORK( I ).GT.SAFE2 ) THEN RWORK( I ) = CABS1( WORK( I ) ) + REAL( NZ )* $ EPS*RWORK( I ) ELSE RWORK( I ) = CABS1( WORK( I ) ) + REAL( NZ )* $ EPS*RWORK( I ) + SAFE1 END IF 90 CONTINUE * KASE = 0 100 CONTINUE CALL CLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE ) IF( KASE.NE.0 ) THEN IF( KASE.EQ.1 ) THEN * * Multiply by diag(W)*inv(A**T). * CALL CSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO ) DO 110 I = 1, N WORK( I ) = RWORK( I )*WORK( I ) 110 CONTINUE ELSE IF( KASE.EQ.2 ) THEN * * Multiply by inv(A)*diag(W). * DO 120 I = 1, N WORK( I ) = RWORK( I )*WORK( I ) 120 CONTINUE CALL CSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO ) END IF GO TO 100 END IF * * Normalize error. * LSTRES = ZERO DO 130 I = 1, N LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) ) 130 CONTINUE IF( LSTRES.NE.ZERO ) $ FERR( J ) = FERR( J ) / LSTRES * 140 CONTINUE * RETURN * * End of CSPRFS * END