numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/cspsvx.f | 13144B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
*> \brief <b> CSPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b> * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CSPSVX + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cspsvx.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cspsvx.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cspsvx.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CSPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, * LDX, RCOND, FERR, BERR, WORK, RWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER FACT, UPLO * INTEGER INFO, LDB, LDX, N, NRHS * REAL RCOND * .. * .. Array Arguments .. * INTEGER IPIV( * ) * REAL BERR( * ), FERR( * ), RWORK( * ) * COMPLEX AFP( * ), AP( * ), B( LDB, * ), WORK( * ), * $ X( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CSPSVX uses the diagonal pivoting factorization A = U*D*U**T or *> A = L*D*L**T to compute the solution to a complex system of linear *> equations A * X = B, where A is an N-by-N symmetric matrix stored *> in packed format and X and B are N-by-NRHS matrices. *> *> Error bounds on the solution and a condition estimate are also *> provided. *> \endverbatim * *> \par Description: * ================= *> *> \verbatim *> *> The following steps are performed: *> *> 1. If FACT = 'N', the diagonal pivoting method is used to factor A as *> A = U * D * U**T, if UPLO = 'U', or *> A = L * D * L**T, if UPLO = 'L', *> where U (or L) is a product of permutation and unit upper (lower) *> triangular matrices and D is symmetric and block diagonal with *> 1-by-1 and 2-by-2 diagonal blocks. *> *> 2. If some D(i,i)=0, so that D is exactly singular, then the routine *> returns with INFO = i. Otherwise, the factored form of A is used *> to estimate the condition number of the matrix A. If the *> reciprocal of the condition number is less than machine precision, *> INFO = N+1 is returned as a warning, but the routine still goes on *> to solve for X and compute error bounds as described below. *> *> 3. The system of equations is solved for X using the factored form *> of A. *> *> 4. Iterative refinement is applied to improve the computed solution *> matrix and calculate error bounds and backward error estimates *> for it. *> \endverbatim * * Arguments: * ========== * *> \param[in] FACT *> \verbatim *> FACT is CHARACTER*1 *> Specifies whether or not the factored form of A has been *> supplied on entry. *> = 'F': On entry, AFP and IPIV contain the factored form *> of A. AP, AFP and IPIV will not be modified. *> = 'N': The matrix A will be copied to AFP and factored. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangle of A is stored; *> = 'L': Lower triangle of A is stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of linear equations, i.e., the order of the *> matrix A. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of the matrices B and X. NRHS >= 0. *> \endverbatim *> *> \param[in] AP *> \verbatim *> AP is COMPLEX array, dimension (N*(N+1)/2) *> The upper or lower triangle of the symmetric matrix A, packed *> columnwise in a linear array. The j-th column of A is stored *> in the array AP as follows: *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. *> See below for further details. *> \endverbatim *> *> \param[in,out] AFP *> \verbatim *> AFP is COMPLEX array, dimension (N*(N+1)/2) *> If FACT = 'F', then AFP is an input argument and on entry *> contains the block diagonal matrix D and the multipliers used *> to obtain the factor U or L from the factorization *> A = U*D*U**T or A = L*D*L**T as computed by CSPTRF, stored as *> a packed triangular matrix in the same storage format as A. *> *> If FACT = 'N', then AFP is an output argument and on exit *> contains the block diagonal matrix D and the multipliers used *> to obtain the factor U or L from the factorization *> A = U*D*U**T or A = L*D*L**T as computed by CSPTRF, stored as *> a packed triangular matrix in the same storage format as A. *> \endverbatim *> *> \param[in,out] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> If FACT = 'F', then IPIV is an input argument and on entry *> contains details of the interchanges and the block structure *> of D, as determined by CSPTRF. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were *> interchanged and D(k,k) is a 1-by-1 diagonal block. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. *> *> If FACT = 'N', then IPIV is an output argument and on exit *> contains details of the interchanges and the block structure *> of D, as determined by CSPTRF. *> \endverbatim *> *> \param[in] B *> \verbatim *> B is COMPLEX array, dimension (LDB,NRHS) *> The N-by-NRHS right hand side matrix B. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX array, dimension (LDX,NRHS) *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. LDX >= max(1,N). *> \endverbatim *> *> \param[out] RCOND *> \verbatim *> RCOND is REAL *> The estimate of the reciprocal condition number of the matrix *> A. If RCOND is less than the machine precision (in *> particular, if RCOND = 0), the matrix is singular to working *> precision. This condition is indicated by a return code of *> INFO > 0. *> \endverbatim *> *> \param[out] FERR *> \verbatim *> FERR is REAL array, dimension (NRHS) *> The estimated forward error bound for each solution vector *> X(j) (the j-th column of the solution matrix X). *> If XTRUE is the true solution corresponding to X(j), FERR(j) *> is an estimated upper bound for the magnitude of the largest *> element in (X(j) - XTRUE) divided by the magnitude of the *> largest element in X(j). The estimate is as reliable as *> the estimate for RCOND, and is almost always a slight *> overestimate of the true error. *> \endverbatim *> *> \param[out] BERR *> \verbatim *> BERR is REAL array, dimension (NRHS) *> The componentwise relative backward error of each solution *> vector X(j) (i.e., the smallest relative change in *> any element of A or B that makes X(j) an exact solution). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (2*N) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, and i is *> <= N: D(i,i) is exactly zero. The factorization *> has been completed but the factor D is exactly *> singular, so the solution and error bounds could *> not be computed. RCOND = 0 is returned. *> = N+1: D is nonsingular, but RCOND is less than machine *> precision, meaning that the matrix is singular *> to working precision. Nevertheless, the *> solution and error bounds are computed because *> there are a number of situations where the *> computed solution can be more accurate than the *> value of RCOND would suggest. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup hpsvx * *> \par Further Details: * ===================== *> *> \verbatim *> *> The packed storage scheme is illustrated by the following example *> when N = 4, UPLO = 'U': *> *> Two-dimensional storage of the symmetric matrix A: *> *> a11 a12 a13 a14 *> a22 a23 a24 *> a33 a34 (aij = aji) *> a44 *> *> Packed storage of the upper triangle of A: *> *> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] *> \endverbatim *> * ===================================================================== SUBROUTINE CSPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, $ X, $ LDX, RCOND, FERR, BERR, WORK, RWORK, INFO ) * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER FACT, UPLO INTEGER INFO, LDB, LDX, N, NRHS REAL RCOND * .. * .. Array Arguments .. INTEGER IPIV( * ) REAL BERR( * ), FERR( * ), RWORK( * ) COMPLEX AFP( * ), AP( * ), B( LDB, * ), WORK( * ), $ X( LDX, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) * .. * .. Local Scalars .. LOGICAL NOFACT REAL ANORM * .. * .. External Functions .. LOGICAL LSAME REAL CLANSP, SLAMCH EXTERNAL LSAME, CLANSP, SLAMCH * .. * .. External Subroutines .. EXTERNAL CCOPY, CLACPY, CSPCON, CSPRFS, CSPTRF, $ CSPTRS, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 NOFACT = LSAME( FACT, 'N' ) IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN INFO = -1 ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. $ .NOT.LSAME( UPLO, 'L' ) ) $ THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( NRHS.LT.0 ) THEN INFO = -4 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -9 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -11 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CSPSVX', -INFO ) RETURN END IF * IF( NOFACT ) THEN * * Compute the factorization A = U*D*U**T or A = L*D*L**T. * CALL CCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 ) CALL CSPTRF( UPLO, N, AFP, IPIV, INFO ) * * Return if INFO is non-zero. * IF( INFO.GT.0 )THEN RCOND = ZERO RETURN END IF END IF * * Compute the norm of the matrix A. * ANORM = CLANSP( 'I', UPLO, N, AP, RWORK ) * * Compute the reciprocal of the condition number of A. * CALL CSPCON( UPLO, N, AFP, IPIV, ANORM, RCOND, WORK, INFO ) * * Compute the solution vectors X. * CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX ) CALL CSPTRS( UPLO, N, NRHS, AFP, IPIV, X, LDX, INFO ) * * Use iterative refinement to improve the computed solutions and * compute error bounds and backward error estimates for them. * CALL CSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, $ FERR, $ BERR, WORK, RWORK, INFO ) * * Set INFO = N+1 if the matrix is singular to working precision. * IF( RCOND.LT.SLAMCH( 'Epsilon' ) ) $ INFO = N + 1 * RETURN * * End of CSPSVX * END