numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/cstein.f | 14051B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
*> \brief \b CSTEIN * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CSTEIN + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cstein.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cstein.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cstein.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, * IWORK, IFAIL, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDZ, M, N * .. * .. Array Arguments .. * INTEGER IBLOCK( * ), IFAIL( * ), ISPLIT( * ), * $ IWORK( * ) * REAL D( * ), E( * ), W( * ), WORK( * ) * COMPLEX Z( LDZ, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CSTEIN computes the eigenvectors of a real symmetric tridiagonal *> matrix T corresponding to specified eigenvalues, using inverse *> iteration. *> *> The maximum number of iterations allowed for each eigenvector is *> specified by an internal parameter MAXITS (currently set to 5). *> *> Although the eigenvectors are real, they are stored in a complex *> array, which may be passed to CUNMTR or CUPMTR for back *> transformation to the eigenvectors of a complex Hermitian matrix *> which was reduced to tridiagonal form. *> *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix. N >= 0. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is REAL array, dimension (N) *> The n diagonal elements of the tridiagonal matrix T. *> \endverbatim *> *> \param[in] E *> \verbatim *> E is REAL array, dimension (N-1) *> The (n-1) subdiagonal elements of the tridiagonal matrix *> T, stored in elements 1 to N-1. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of eigenvectors to be found. 0 <= M <= N. *> \endverbatim *> *> \param[in] W *> \verbatim *> W is REAL array, dimension (N) *> The first M elements of W contain the eigenvalues for *> which eigenvectors are to be computed. The eigenvalues *> should be grouped by split-off block and ordered from *> smallest to largest within the block. ( The output array *> W from SSTEBZ with ORDER = 'B' is expected here. ) *> \endverbatim *> *> \param[in] IBLOCK *> \verbatim *> IBLOCK is INTEGER array, dimension (N) *> The submatrix indices associated with the corresponding *> eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to *> the first submatrix from the top, =2 if W(i) belongs to *> the second submatrix, etc. ( The output array IBLOCK *> from SSTEBZ is expected here. ) *> \endverbatim *> *> \param[in] ISPLIT *> \verbatim *> ISPLIT is INTEGER array, dimension (N) *> The splitting points, at which T breaks up into submatrices. *> The first submatrix consists of rows/columns 1 to *> ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 *> through ISPLIT( 2 ), etc. *> ( The output array ISPLIT from SSTEBZ is expected here. ) *> \endverbatim *> *> \param[out] Z *> \verbatim *> Z is COMPLEX array, dimension (LDZ, M) *> The computed eigenvectors. The eigenvector associated *> with the eigenvalue W(i) is stored in the i-th column of *> Z. Any vector which fails to converge is set to its current *> iterate after MAXITS iterations. *> The imaginary parts of the eigenvectors are set to zero. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. LDZ >= max(1,N). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (5*N) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (N) *> \endverbatim *> *> \param[out] IFAIL *> \verbatim *> IFAIL is INTEGER array, dimension (M) *> On normal exit, all elements of IFAIL are zero. *> If one or more eigenvectors fail to converge after *> MAXITS iterations, then their indices are stored in *> array IFAIL. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, then i eigenvectors failed to converge *> in MAXITS iterations. Their indices are stored in *> array IFAIL. *> \endverbatim * *> \par Internal Parameters: * ========================= *> *> \verbatim *> MAXITS INTEGER, default = 5 *> The maximum number of iterations performed. *> *> EXTRA INTEGER, default = 2 *> The number of iterations performed after norm growth *> criterion is satisfied, should be at least 1. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup stein * * ===================================================================== SUBROUTINE CSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, $ IWORK, IFAIL, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDZ, M, N * .. * .. Array Arguments .. INTEGER IBLOCK( * ), IFAIL( * ), ISPLIT( * ), $ IWORK( * ) REAL D( * ), E( * ), W( * ), WORK( * ) COMPLEX Z( LDZ, * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) REAL ZERO, ONE, TEN, ODM3, ODM1 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TEN = 1.0E+1, $ ODM3 = 1.0E-3, ODM1 = 1.0E-1 ) INTEGER MAXITS, EXTRA PARAMETER ( MAXITS = 5, EXTRA = 2 ) * .. * .. Local Scalars .. INTEGER B1, BLKSIZ, BN, GPIND, I, IINFO, INDRV1, $ INDRV2, INDRV3, INDRV4, INDRV5, ITS, J, J1, $ JBLK, JMAX, JR, NBLK, NRMCHK REAL CTR, EPS, EPS1, NRM, ONENRM, ORTOL, PERTOL, $ SCL, SEP, STPCRT, TOL, XJ, XJM * .. * .. Local Arrays .. INTEGER ISEED( 4 ) * .. * .. External Functions .. INTEGER ISAMAX REAL SLAMCH, SNRM2 EXTERNAL ISAMAX, SLAMCH, SNRM2 * .. * .. External Subroutines .. EXTERNAL SCOPY, SLAGTF, SLAGTS, SLARNV, SSCAL, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, CMPLX, MAX, REAL, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 DO 10 I = 1, M IFAIL( I ) = 0 10 CONTINUE * IF( N.LT.0 ) THEN INFO = -1 ELSE IF( M.LT.0 .OR. M.GT.N ) THEN INFO = -4 ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN INFO = -9 ELSE DO 20 J = 2, M IF( IBLOCK( J ).LT.IBLOCK( J-1 ) ) THEN INFO = -6 GO TO 30 END IF IF( IBLOCK( J ).EQ.IBLOCK( J-1 ) .AND. W( J ).LT.W( J-1 ) ) $ THEN INFO = -5 GO TO 30 END IF 20 CONTINUE 30 CONTINUE END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CSTEIN', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 .OR. M.EQ.0 ) THEN RETURN ELSE IF( N.EQ.1 ) THEN Z( 1, 1 ) = CONE RETURN END IF * * Get machine constants. * EPS = SLAMCH( 'Precision' ) * * Initialize seed for random number generator SLARNV. * DO 40 I = 1, 4 ISEED( I ) = 1 40 CONTINUE * * Initialize pointers. * INDRV1 = 0 INDRV2 = INDRV1 + N INDRV3 = INDRV2 + N INDRV4 = INDRV3 + N INDRV5 = INDRV4 + N * * Compute eigenvectors of matrix blocks. * J1 = 1 DO 180 NBLK = 1, IBLOCK( M ) * * Find starting and ending indices of block nblk. * IF( NBLK.EQ.1 ) THEN B1 = 1 ELSE B1 = ISPLIT( NBLK-1 ) + 1 END IF BN = ISPLIT( NBLK ) BLKSIZ = BN - B1 + 1 IF( BLKSIZ.EQ.1 ) $ GO TO 60 GPIND = J1 * * Compute reorthogonalization criterion and stopping criterion. * ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) ) ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) ) DO 50 I = B1 + 1, BN - 1 ONENRM = MAX( ONENRM, ABS( D( I ) )+ABS( E( I-1 ) )+ $ ABS( E( I ) ) ) 50 CONTINUE ORTOL = ODM3*ONENRM * STPCRT = SQRT( ODM1 / REAL( BLKSIZ ) ) * * Loop through eigenvalues of block nblk. * 60 CONTINUE JBLK = 0 DO 170 J = J1, M IF( IBLOCK( J ).NE.NBLK ) THEN J1 = J GO TO 180 END IF JBLK = JBLK + 1 XJ = W( J ) * * Skip all the work if the block size is one. * IF( BLKSIZ.EQ.1 ) THEN WORK( INDRV1+1 ) = ONE GO TO 140 END IF * * If eigenvalues j and j-1 are too close, add a relatively * small perturbation. * IF( JBLK.GT.1 ) THEN EPS1 = ABS( EPS*XJ ) PERTOL = TEN*EPS1 SEP = XJ - XJM IF( SEP.LT.PERTOL ) $ XJ = XJM + PERTOL END IF * ITS = 0 NRMCHK = 0 * * Get random starting vector. * CALL SLARNV( 2, ISEED, BLKSIZ, WORK( INDRV1+1 ) ) * * Copy the matrix T so it won't be destroyed in factorization. * CALL SCOPY( BLKSIZ, D( B1 ), 1, WORK( INDRV4+1 ), 1 ) CALL SCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV2+2 ), 1 ) CALL SCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV3+1 ), 1 ) * * Compute LU factors with partial pivoting ( PT = LU ) * TOL = ZERO CALL SLAGTF( BLKSIZ, WORK( INDRV4+1 ), XJ, $ WORK( INDRV2+2 ), $ WORK( INDRV3+1 ), TOL, WORK( INDRV5+1 ), IWORK, $ IINFO ) * * Update iteration count. * 70 CONTINUE ITS = ITS + 1 IF( ITS.GT.MAXITS ) $ GO TO 120 * * Normalize and scale the righthand side vector Pb. * JMAX = ISAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 ) SCL = REAL( BLKSIZ )*ONENRM*MAX( EPS, $ ABS( WORK( INDRV4+BLKSIZ ) ) ) / $ ABS( WORK( INDRV1+JMAX ) ) CALL SSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 ) * * Solve the system LU = Pb. * CALL SLAGTS( -1, BLKSIZ, WORK( INDRV4+1 ), $ WORK( INDRV2+2 ), $ WORK( INDRV3+1 ), WORK( INDRV5+1 ), IWORK, $ WORK( INDRV1+1 ), TOL, IINFO ) * * Reorthogonalize by modified Gram-Schmidt if eigenvalues are * close enough. * IF( JBLK.EQ.1 ) $ GO TO 110 IF( ABS( XJ-XJM ).GT.ORTOL ) $ GPIND = J IF( GPIND.NE.J ) THEN DO 100 I = GPIND, J - 1 CTR = ZERO DO 80 JR = 1, BLKSIZ CTR = CTR + WORK( INDRV1+JR )* $ REAL( Z( B1-1+JR, I ) ) 80 CONTINUE DO 90 JR = 1, BLKSIZ WORK( INDRV1+JR ) = WORK( INDRV1+JR ) - $ CTR*REAL( Z( B1-1+JR, I ) ) 90 CONTINUE 100 CONTINUE END IF * * Check the infinity norm of the iterate. * 110 CONTINUE JMAX = ISAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 ) NRM = ABS( WORK( INDRV1+JMAX ) ) * * Continue for additional iterations after norm reaches * stopping criterion. * IF( NRM.LT.STPCRT ) $ GO TO 70 NRMCHK = NRMCHK + 1 IF( NRMCHK.LT.EXTRA+1 ) $ GO TO 70 * GO TO 130 * * If stopping criterion was not satisfied, update info and * store eigenvector number in array ifail. * 120 CONTINUE INFO = INFO + 1 IFAIL( INFO ) = J * * Accept iterate as jth eigenvector. * 130 CONTINUE SCL = ONE / SNRM2( BLKSIZ, WORK( INDRV1+1 ), 1 ) JMAX = ISAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 ) IF( WORK( INDRV1+JMAX ).LT.ZERO ) $ SCL = -SCL CALL SSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 ) 140 CONTINUE DO 150 I = 1, N Z( I, J ) = CZERO 150 CONTINUE DO 160 I = 1, BLKSIZ Z( B1+I-1, J ) = CMPLX( WORK( INDRV1+I ), ZERO ) 160 CONTINUE * * Save the shift to check eigenvalue spacing at next * iteration. * XJM = XJ * 170 CONTINUE 180 CONTINUE * RETURN * * End of CSTEIN * END