numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/csysv_aa.f 7880B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
*> \brief <b> CSYSV_AA computes the solution to system of linear equations A * X = B for SY matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CSYSV_AA + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csysv_aa.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csysv_aa.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csysv_aa.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CSYSV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
*                            LWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            N, NRHS, LDA, LDB, LWORK, INFO
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CSYSV computes the solution to a complex system of linear equations
*>    A * X = B,
*> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
*> matrices.
*>
*> Aasen's algorithm is used to factor A as
*>    A = U**T * T * U,  if UPLO = 'U', or
*>    A = L * T * L**T,  if UPLO = 'L',
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is symmetric tridiagonal. The factored
*> form of A is then used to solve the system of equations A * X = B.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored;
*>          = 'L':  Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of linear equations, i.e., the order of the
*>          matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
*>          N-by-N upper triangular part of A contains the upper
*>          triangular part of the matrix A, and the strictly lower
*>          triangular part of A is not referenced.  If UPLO = 'L', the
*>          leading N-by-N lower triangular part of A contains the lower
*>          triangular part of the matrix A, and the strictly upper
*>          triangular part of A is not referenced.
*>
*>          On exit, if INFO = 0, the tridiagonal matrix T and the
*>          multipliers used to obtain the factor U or L from the
*>          factorization A = U**T*T*U or A = L*T*L**T as computed by
*>          CSYTRF.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          On exit, it contains the details of the interchanges, i.e.,
*>          the row and column k of A were interchanged with the
*>          row and column IPIV(k).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX array, dimension (LDB,NRHS)
*>          On entry, the N-by-NRHS right hand side matrix B.
*>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The length of WORK.  LWORK >= MAX(2*N, 3*N-2), and for
*>          the best performance, LWORK >= max(1,N*NB), where NB is
*>          the optimal blocksize for CSYTRF_AA.
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
*>               has been completed, but the block diagonal matrix D is
*>               exactly singular, so the solution could not be computed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup hesv_aa
*
*  =====================================================================
      SUBROUTINE CSYSV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
     $                        LWORK, INFO )
*
*  -- LAPACK driver routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LDB, LWORK, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            LWKOPT, LWKOPT_SYTRF, LWKOPT_SYTRS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      REAL               SROUNDUP_LWORK
      EXTERNAL           ILAENV, LSAME, SROUNDUP_LWORK
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, CSYTRF_AA, CSYTRS_AA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      IF( .NOT.LSAME( UPLO, 'U' ) .AND.
     $    .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LWORK.LT.MAX(2*N, 3*N-2) .AND. .NOT.LQUERY ) THEN
         INFO = -10
      END IF
*
      IF( INFO.EQ.0 ) THEN
         CALL CSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, -1, INFO )
         LWKOPT_SYTRF = INT( WORK(1) )
         CALL CSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
     $                   -1, INFO )
         LWKOPT_SYTRS = INT( WORK(1) )
         LWKOPT = MAX( LWKOPT_SYTRF, LWKOPT_SYTRS )
         WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CSYSV_AA ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Compute the factorization A = U**T*T*U or A = L*T*L**T.
*
      CALL CSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
      IF( INFO.EQ.0 ) THEN
*
*        Solve the system A*X = B, overwriting B with X.
*
         CALL CSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
     $                      LWORK, INFO )
*
      END IF
*
      WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
*
      RETURN
*
*     End of CSYSV_AA
*
      END