numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/csysv_rk.f | 10564B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
*> \brief <b> CSYSV_RK computes the solution to system of linear equations A * X = B for SY matrices</b> * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CSYSV_RK + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csysv_rk.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csysv_rk.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csysv_rk.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CSYSV_RK( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, * WORK, LWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, LDA, LDB, LWORK, N, NRHS * .. * .. Array Arguments .. * INTEGER IPIV( * ) * COMPLEX A( LDA, * ), B( LDB, * ), E( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> CSYSV_RK computes the solution to a complex system of linear *> equations A * X = B, where A is an N-by-N symmetric matrix *> and X and B are N-by-NRHS matrices. *> *> The bounded Bunch-Kaufman (rook) diagonal pivoting method is used *> to factor A as *> A = P*U*D*(U**T)*(P**T), if UPLO = 'U', or *> A = P*L*D*(L**T)*(P**T), if UPLO = 'L', *> where U (or L) is unit upper (or lower) triangular matrix, *> U**T (or L**T) is the transpose of U (or L), P is a permutation *> matrix, P**T is the transpose of P, and D is symmetric and block *> diagonal with 1-by-1 and 2-by-2 diagonal blocks. *> *> CSYTRF_RK is called to compute the factorization of a complex *> symmetric matrix. The factored form of A is then used to solve *> the system of equations A * X = B by calling BLAS3 routine CSYTRS_3. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the upper or lower triangular part of the *> symmetric matrix A is stored: *> = 'U': Upper triangle of A is stored; *> = 'L': Lower triangle of A is stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of linear equations, i.e., the order of the *> matrix A. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of the matrix B. NRHS >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> On entry, the symmetric matrix A. *> If UPLO = 'U': the leading N-by-N upper triangular part *> of A contains the upper triangular part of the matrix A, *> and the strictly lower triangular part of A is not *> referenced. *> *> If UPLO = 'L': the leading N-by-N lower triangular part *> of A contains the lower triangular part of the matrix A, *> and the strictly upper triangular part of A is not *> referenced. *> *> On exit, if INFO = 0, diagonal of the block diagonal *> matrix D and factors U or L as computed by CSYTRF_RK: *> a) ONLY diagonal elements of the symmetric block diagonal *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); *> (superdiagonal (or subdiagonal) elements of D *> are stored on exit in array E), and *> b) If UPLO = 'U': factor U in the superdiagonal part of A. *> If UPLO = 'L': factor L in the subdiagonal part of A. *> *> For more info see the description of CSYTRF_RK routine. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] E *> \verbatim *> E is COMPLEX array, dimension (N) *> On exit, contains the output computed by the factorization *> routine CSYTRF_RK, i.e. the superdiagonal (or subdiagonal) *> elements of the symmetric block diagonal matrix D *> with 1-by-1 or 2-by-2 diagonal blocks, where *> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; *> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. *> *> NOTE: For 1-by-1 diagonal block D(k), where *> 1 <= k <= N, the element E(k) is set to 0 in both *> UPLO = 'U' or UPLO = 'L' cases. *> *> For more info see the description of CSYTRF_RK routine. *> \endverbatim *> *> \param[out] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> Details of the interchanges and the block structure of D, *> as determined by CSYTRF_RK. *> *> For more info see the description of CSYTRF_RK routine. *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX array, dimension (LDB,NRHS) *> On entry, the N-by-NRHS right hand side matrix B. *> On exit, if INFO = 0, the N-by-NRHS solution matrix X. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension ( MAX(1,LWORK) ). *> Work array used in the factorization stage. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The length of WORK. LWORK >= 1. For best performance *> of factorization stage LWORK >= max(1,N*NB), where NB is *> the optimal blocksize for CSYTRF_RK. *> *> If LWORK = -1, then a workspace query is assumed; *> the routine only calculates the optimal size of the WORK *> array for factorization stage, returns this value as *> the first entry of the WORK array, and no error message *> related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> *> < 0: If INFO = -k, the k-th argument had an illegal value *> *> > 0: If INFO = k, the matrix A is singular, because: *> If UPLO = 'U': column k in the upper *> triangular part of A contains all zeros. *> If UPLO = 'L': column k in the lower *> triangular part of A contains all zeros. *> *> Therefore D(k,k) is exactly zero, and superdiagonal *> elements of column k of U (or subdiagonal elements of *> column k of L ) are all zeros. The factorization has *> been completed, but the block diagonal matrix D is *> exactly singular, and division by zero will occur if *> it is used to solve a system of equations. *> *> NOTE: INFO only stores the first occurrence of *> a singularity, any subsequent occurrence of singularity *> is not stored in INFO even though the factorization *> always completes. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup hesv_rk * *> \par Contributors: * ================== *> *> \verbatim *> *> December 2016, Igor Kozachenko, *> Computer Science Division, *> University of California, Berkeley *> *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, *> School of Mathematics, *> University of Manchester *> *> \endverbatim * * ===================================================================== SUBROUTINE CSYSV_RK( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, $ WORK, $ LWORK, INFO ) * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, LDB, LWORK, N, NRHS * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX A( LDA, * ), B( LDB, * ), E( * ), WORK( * ) * .. * * ===================================================================== * * .. Local Scalars .. LOGICAL LQUERY INTEGER LWKOPT * .. * .. External Functions .. LOGICAL LSAME REAL SROUNDUP_LWORK EXTERNAL LSAME, SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL XERBLA, CSYTRF_RK, CSYTRS_3 * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) IF( .NOT.LSAME( UPLO, 'U' ) .AND. $ .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( NRHS.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -9 ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN INFO = -11 END IF * IF( INFO.EQ.0 ) THEN IF( N.EQ.0 ) THEN LWKOPT = 1 ELSE CALL CSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, -1, $ INFO ) LWKOPT = INT( WORK( 1 ) ) END IF WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CSYSV_RK ', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Compute the factorization A = U*D*U**T or A = L*D*L**T. * CALL CSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO ) * IF( INFO.EQ.0 ) THEN * * Solve the system A*X = B with BLAS3 solver, overwriting B with X. * CALL CSYTRS_3( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, $ INFO ) * END IF * WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) * RETURN * * End of CSYSV_RK * END