numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/csytrs_3.f | 11426B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
*> \brief \b CSYTRS_3 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CSYTRS_3 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csytrs_3.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csytrs_3.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csytrs_3.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CSYTRS_3( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, * INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, LDA, LDB, N, NRHS * .. * .. Array Arguments .. * INTEGER IPIV( * ) * COMPLEX A( LDA, * ), B( LDB, * ), E( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> CSYTRS_3 solves a system of linear equations A * X = B with a complex *> symmetric matrix A using the factorization computed *> by CSYTRF_RK or CSYTRF_BK: *> *> A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), *> *> where U (or L) is unit upper (or lower) triangular matrix, *> U**T (or L**T) is the transpose of U (or L), P is a permutation *> matrix, P**T is the transpose of P, and D is symmetric and block *> diagonal with 1-by-1 and 2-by-2 diagonal blocks. *> *> This algorithm is using Level 3 BLAS. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the details of the factorization are *> stored as an upper or lower triangular matrix: *> = 'U': Upper triangular, form is A = P*U*D*(U**T)*(P**T); *> = 'L': Lower triangular, form is A = P*L*D*(L**T)*(P**T). *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of the matrix B. NRHS >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> Diagonal of the block diagonal matrix D and factors U or L *> as computed by CSYTRF_RK and CSYTRF_BK: *> a) ONLY diagonal elements of the symmetric block diagonal *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); *> (superdiagonal (or subdiagonal) elements of D *> should be provided on entry in array E), and *> b) If UPLO = 'U': factor U in the superdiagonal part of A. *> If UPLO = 'L': factor L in the subdiagonal part of A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in] E *> \verbatim *> E is COMPLEX array, dimension (N) *> On entry, contains the superdiagonal (or subdiagonal) *> elements of the symmetric block diagonal matrix D *> with 1-by-1 or 2-by-2 diagonal blocks, where *> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; *> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. *> *> NOTE: For 1-by-1 diagonal block D(k), where *> 1 <= k <= N, the element E(k) is not referenced in both *> UPLO = 'U' or UPLO = 'L' cases. *> \endverbatim *> *> \param[in] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> Details of the interchanges and the block structure of D *> as determined by CSYTRF_RK or CSYTRF_BK. *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX array, dimension (LDB,NRHS) *> On entry, the right hand side matrix B. *> On exit, the solution matrix X. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup hetrs_3 * *> \par Contributors: * ================== *> *> \verbatim *> *> June 2017, Igor Kozachenko, *> Computer Science Division, *> University of California, Berkeley *> *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, *> School of Mathematics, *> University of Manchester *> *> \endverbatim * * ===================================================================== SUBROUTINE CSYTRS_3( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, $ INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, LDB, N, NRHS * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX A( LDA, * ), B( LDB, * ), E( * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX ONE PARAMETER ( ONE = ( 1.0E+0,0.0E+0 ) ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER I, J, K, KP COMPLEX AK, AKM1, AKM1K, BK, BKM1, DENOM * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL CSCAL, CSWAP, CTRSM, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. Executable Statements .. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( NRHS.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -9 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CSYTRS_3', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 .OR. NRHS.EQ.0 ) $ RETURN * IF( UPPER ) THEN * * Begin Upper * * Solve A*X = B, where A = U*D*U**T. * * P**T * B * * Interchange rows K and IPIV(K) of matrix B in the same order * that the formation order of IPIV(I) vector for Upper case. * * (We can do the simple loop over IPIV with decrement -1, * since the ABS value of IPIV(I) represents the row index * of the interchange with row i in both 1x1 and 2x2 pivot cases) * DO K = N, 1, -1 KP = ABS( IPIV( K ) ) IF( KP.NE.K ) THEN CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) END IF END DO * * Compute (U \P**T * B) -> B [ (U \P**T * B) ] * CALL CTRSM( 'L', 'U', 'N', 'U', N, NRHS, ONE, A, LDA, B, $ LDB ) * * Compute D \ B -> B [ D \ (U \P**T * B) ] * I = N DO WHILE ( I.GE.1 ) IF( IPIV( I ).GT.0 ) THEN CALL CSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB ) ELSE IF ( I.GT.1 ) THEN AKM1K = E( I ) AKM1 = A( I-1, I-1 ) / AKM1K AK = A( I, I ) / AKM1K DENOM = AKM1*AK - ONE DO J = 1, NRHS BKM1 = B( I-1, J ) / AKM1K BK = B( I, J ) / AKM1K B( I-1, J ) = ( AK*BKM1-BK ) / DENOM B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM END DO I = I - 1 END IF I = I - 1 END DO * * Compute (U**T \ B) -> B [ U**T \ (D \ (U \P**T * B) ) ] * CALL CTRSM( 'L', 'U', 'T', 'U', N, NRHS, ONE, A, LDA, B, $ LDB ) * * P * B [ P * (U**T \ (D \ (U \P**T * B) )) ] * * Interchange rows K and IPIV(K) of matrix B in reverse order * from the formation order of IPIV(I) vector for Upper case. * * (We can do the simple loop over IPIV with increment 1, * since the ABS value of IPIV( I ) represents the row index * of the interchange with row i in both 1x1 and 2x2 pivot cases) * DO K = 1, N, 1 KP = ABS( IPIV( K ) ) IF( KP.NE.K ) THEN CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) END IF END DO * ELSE * * Begin Lower * * Solve A*X = B, where A = L*D*L**T. * * P**T * B * Interchange rows K and IPIV(K) of matrix B in the same order * that the formation order of IPIV(I) vector for Lower case. * * (We can do the simple loop over IPIV with increment 1, * since the ABS value of IPIV(I) represents the row index * of the interchange with row i in both 1x1 and 2x2 pivot cases) * DO K = 1, N, 1 KP = ABS( IPIV( K ) ) IF( KP.NE.K ) THEN CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) END IF END DO * * Compute (L \P**T * B) -> B [ (L \P**T * B) ] * CALL CTRSM( 'L', 'L', 'N', 'U', N, NRHS, ONE, A, LDA, B, $ LDB ) * * Compute D \ B -> B [ D \ (L \P**T * B) ] * I = 1 DO WHILE ( I.LE.N ) IF( IPIV( I ).GT.0 ) THEN CALL CSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB ) ELSE IF( I.LT.N ) THEN AKM1K = E( I ) AKM1 = A( I, I ) / AKM1K AK = A( I+1, I+1 ) / AKM1K DENOM = AKM1*AK - ONE DO J = 1, NRHS BKM1 = B( I, J ) / AKM1K BK = B( I+1, J ) / AKM1K B( I, J ) = ( AK*BKM1-BK ) / DENOM B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM END DO I = I + 1 END IF I = I + 1 END DO * * Compute (L**T \ B) -> B [ L**T \ (D \ (L \P**T * B) ) ] * CALL CTRSM('L', 'L', 'T', 'U', N, NRHS, ONE, A, LDA, B, $ LDB ) * * P * B [ P * (L**T \ (D \ (L \P**T * B) )) ] * * Interchange rows K and IPIV(K) of matrix B in reverse order * from the formation order of IPIV(I) vector for Lower case. * * (We can do the simple loop over IPIV with decrement -1, * since the ABS value of IPIV(I) represents the row index * of the interchange with row i in both 1x1 and 2x2 pivot cases) * DO K = N, 1, -1 KP = ABS( IPIV( K ) ) IF( KP.NE.K ) THEN CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) END IF END DO * * END Lower * END IF * RETURN * * End of CSYTRS_3 * END