numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/ctgex2.f | 11869B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
*> \brief \b CTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an unitary equivalence transformation. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CTGEX2 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgex2.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgex2.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgex2.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, * LDZ, J1, INFO ) * * .. Scalar Arguments .. * LOGICAL WANTQ, WANTZ * INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N * .. * .. Array Arguments .. * COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ), * $ Z( LDZ, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22) *> in an upper triangular matrix pair (A, B) by an unitary equivalence *> transformation. *> *> (A, B) must be in generalized Schur canonical form, that is, A and *> B are both upper triangular. *> *> Optionally, the matrices Q and Z of generalized Schur vectors are *> updated. *> *> Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H *> Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H *> *> \endverbatim * * Arguments: * ========== * *> \param[in] WANTQ *> \verbatim *> WANTQ is LOGICAL *> .TRUE. : update the left transformation matrix Q; *> .FALSE.: do not update Q. *> \endverbatim *> *> \param[in] WANTZ *> \verbatim *> WANTZ is LOGICAL *> .TRUE. : update the right transformation matrix Z; *> .FALSE.: do not update Z. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A and B. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> On entry, the matrix A in the pair (A, B). *> On exit, the updated matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX array, dimension (LDB,N) *> On entry, the matrix B in the pair (A, B). *> On exit, the updated matrix B. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[in,out] Q *> \verbatim *> Q is COMPLEX array, dimension (LDQ,N) *> If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit, *> the updated matrix Q. *> Not referenced if WANTQ = .FALSE.. *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. LDQ >= 1; *> If WANTQ = .TRUE., LDQ >= N. *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is COMPLEX array, dimension (LDZ,N) *> If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit, *> the updated matrix Z. *> Not referenced if WANTZ = .FALSE.. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. LDZ >= 1; *> If WANTZ = .TRUE., LDZ >= N. *> \endverbatim *> *> \param[in] J1 *> \verbatim *> J1 is INTEGER *> The index to the first block (A11, B11). *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> =0: Successful exit. *> =1: The transformed matrix pair (A, B) would be too far *> from generalized Schur form; the problem is ill- *> conditioned. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup tgex2 * *> \par Further Details: * ===================== *> *> In the current code both weak and strong stability tests are *> performed. The user can omit the strong stability test by changing *> the internal logical parameter WANDS to .FALSE.. See ref. [2] for *> details. * *> \par Contributors: * ================== *> *> Bo Kagstrom and Peter Poromaa, Department of Computing Science, *> Umea University, S-901 87 Umea, Sweden. * *> \par References: * ================ *> *> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the *> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in *> M.S. Moonen et al (eds), Linear Algebra for Large Scale and *> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. *> \n *> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified *> Eigenvalues of a Regular Matrix Pair (A, B) and Condition *> Estimation: Theory, Algorithms and Software, Report UMINF-94.04, *> Department of Computing Science, Umea University, S-901 87 Umea, *> Sweden, 1994. Also as LAPACK Working Note 87. To appear in *> Numerical Algorithms, 1996. *> * ===================================================================== SUBROUTINE CTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, $ LDZ, J1, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL WANTQ, WANTZ INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N * .. * .. Array Arguments .. COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ), $ Z( LDZ, * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) REAL TWENTY PARAMETER ( TWENTY = 2.0E+1 ) INTEGER LDST PARAMETER ( LDST = 2 ) LOGICAL WANDS PARAMETER ( WANDS = .TRUE. ) * .. * .. Local Scalars .. LOGICAL STRONG, WEAK INTEGER I, M REAL CQ, CZ, EPS, SA, SB, SCALE, SMLNUM, SUM, $ THRESHA, THRESHB COMPLEX CDUM, F, G, SQ, SZ * .. * .. Local Arrays .. COMPLEX S( LDST, LDST ), T( LDST, LDST ), WORK( 8 ) * .. * .. External Functions .. REAL SLAMCH EXTERNAL SLAMCH * .. * .. External Subroutines .. EXTERNAL CLACPY, CLARTG, CLASSQ, CROT * .. * .. Intrinsic Functions .. INTRINSIC ABS, CONJG, MAX, REAL, SQRT * .. * .. Executable Statements .. * INFO = 0 * * Quick return if possible * IF( N.LE.1 ) $ RETURN * M = LDST WEAK = .FALSE. STRONG = .FALSE. * * Make a local copy of selected block in (A, B) * CALL CLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST ) CALL CLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST ) * * Compute the threshold for testing the acceptance of swapping. * EPS = SLAMCH( 'P' ) SMLNUM = SLAMCH( 'S' ) / EPS SCALE = REAL( CZERO ) SUM = REAL( CONE ) CALL CLACPY( 'Full', M, M, S, LDST, WORK, M ) CALL CLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M ) CALL CLASSQ( M*M, WORK, 1, SCALE, SUM ) SA = SCALE*SQRT( SUM ) SCALE = DBLE( CZERO ) SUM = DBLE( CONE ) CALL CLASSQ( M*M, WORK(M*M+1), 1, SCALE, SUM ) SB = SCALE*SQRT( SUM ) * * THRES has been changed from * THRESH = MAX( TEN*EPS*SA, SMLNUM ) * to * THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) * on 04/01/10. * "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by * Jim Demmel and Guillaume Revy. See forum post 1783. * THRESHA = MAX( TWENTY*EPS*SA, SMLNUM ) THRESHB = MAX( TWENTY*EPS*SB, SMLNUM ) * * Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks * using Givens rotations and perform the swap tentatively. * F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 ) G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 ) SA = ABS( S( 2, 2 ) ) * ABS( T( 1, 1 ) ) SB = ABS( S( 1, 1 ) ) * ABS( T( 2, 2 ) ) CALL CLARTG( G, F, CZ, SZ, CDUM ) SZ = -SZ CALL CROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, CZ, CONJG( SZ ) ) CALL CROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, CZ, CONJG( SZ ) ) IF( SA.GE.SB ) THEN CALL CLARTG( S( 1, 1 ), S( 2, 1 ), CQ, SQ, CDUM ) ELSE CALL CLARTG( T( 1, 1 ), T( 2, 1 ), CQ, SQ, CDUM ) END IF CALL CROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, CQ, SQ ) CALL CROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, CQ, SQ ) * * Weak stability test: |S21| <= O(EPS F-norm((A))) * and |T21| <= O(EPS F-norm((B))) * WEAK = ABS( S( 2, 1 ) ).LE.THRESHA .AND. $ ABS( T( 2, 1 ) ).LE.THRESHB IF( .NOT.WEAK ) $ GO TO 20 * IF( WANDS ) THEN * * Strong stability test: * F-norm((A-QL**H*S*QR, B-QL**H*T*QR)) <= O(EPS*F-norm((A, B))) * CALL CLACPY( 'Full', M, M, S, LDST, WORK, M ) CALL CLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M ) CALL CROT( 2, WORK, 1, WORK( 3 ), 1, CZ, -CONJG( SZ ) ) CALL CROT( 2, WORK( 5 ), 1, WORK( 7 ), 1, CZ, -CONJG( SZ ) ) CALL CROT( 2, WORK, 2, WORK( 2 ), 2, CQ, -SQ ) CALL CROT( 2, WORK( 5 ), 2, WORK( 6 ), 2, CQ, -SQ ) DO 10 I = 1, 2 WORK( I ) = WORK( I ) - A( J1+I-1, J1 ) WORK( I+2 ) = WORK( I+2 ) - A( J1+I-1, J1+1 ) WORK( I+4 ) = WORK( I+4 ) - B( J1+I-1, J1 ) WORK( I+6 ) = WORK( I+6 ) - B( J1+I-1, J1+1 ) 10 CONTINUE SCALE = DBLE( CZERO ) SUM = DBLE( CONE ) CALL CLASSQ( M*M, WORK, 1, SCALE, SUM ) SA = SCALE*SQRT( SUM ) SCALE = DBLE( CZERO ) SUM = DBLE( CONE ) CALL CLASSQ( M*M, WORK(M*M+1), 1, SCALE, SUM ) SB = SCALE*SQRT( SUM ) STRONG = SA.LE.THRESHA .AND. SB.LE.THRESHB IF( .NOT.STRONG ) $ GO TO 20 END IF * * If the swap is accepted ("weakly" and "strongly"), apply the * equivalence transformations to the original matrix pair (A,B) * CALL CROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, CZ, $ CONJG( SZ ) ) CALL CROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, CZ, $ CONJG( SZ ) ) CALL CROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, CQ, $ SQ ) CALL CROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, CQ, $ SQ ) * * Set N1 by N2 (2,1) blocks to 0 * A( J1+1, J1 ) = CZERO B( J1+1, J1 ) = CZERO * * Accumulate transformations into Q and Z if requested. * IF( WANTZ ) $ CALL CROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, CZ, $ CONJG( SZ ) ) IF( WANTQ ) $ CALL CROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, CQ, $ CONJG( SQ ) ) * * Exit with INFO = 0 if swap was successfully performed. * RETURN * * Exit with INFO = 1 if swap was rejected. * 20 CONTINUE INFO = 1 RETURN * * End of CTGEX2 * END