numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/ctgsna.f | 16873B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
*> \brief \b CTGSNA * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CTGSNA + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgsna.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgsna.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgsna.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, * LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK, * IWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER HOWMNY, JOB * INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N * .. * .. Array Arguments .. * LOGICAL SELECT( * ) * INTEGER IWORK( * ) * REAL DIF( * ), S( * ) * COMPLEX A( LDA, * ), B( LDB, * ), VL( LDVL, * ), * $ VR( LDVR, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CTGSNA estimates reciprocal condition numbers for specified *> eigenvalues and/or eigenvectors of a matrix pair (A, B). *> *> (A, B) must be in generalized Schur canonical form, that is, A and *> B are both upper triangular. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOB *> \verbatim *> JOB is CHARACTER*1 *> Specifies whether condition numbers are required for *> eigenvalues (S) or eigenvectors (DIF): *> = 'E': for eigenvalues only (S); *> = 'V': for eigenvectors only (DIF); *> = 'B': for both eigenvalues and eigenvectors (S and DIF). *> \endverbatim *> *> \param[in] HOWMNY *> \verbatim *> HOWMNY is CHARACTER*1 *> = 'A': compute condition numbers for all eigenpairs; *> = 'S': compute condition numbers for selected eigenpairs *> specified by the array SELECT. *> \endverbatim *> *> \param[in] SELECT *> \verbatim *> SELECT is LOGICAL array, dimension (N) *> If HOWMNY = 'S', SELECT specifies the eigenpairs for which *> condition numbers are required. To select condition numbers *> for the corresponding j-th eigenvalue and/or eigenvector, *> SELECT(j) must be set to .TRUE.. *> If HOWMNY = 'A', SELECT is not referenced. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the square matrix pair (A, B). N >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> The upper triangular matrix A in the pair (A,B). *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in] B *> \verbatim *> B is COMPLEX array, dimension (LDB,N) *> The upper triangular matrix B in the pair (A, B). *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[in] VL *> \verbatim *> VL is COMPLEX array, dimension (LDVL,M) *> IF JOB = 'E' or 'B', VL must contain left eigenvectors of *> (A, B), corresponding to the eigenpairs specified by HOWMNY *> and SELECT. The eigenvectors must be stored in consecutive *> columns of VL, as returned by CTGEVC. *> If JOB = 'V', VL is not referenced. *> \endverbatim *> *> \param[in] LDVL *> \verbatim *> LDVL is INTEGER *> The leading dimension of the array VL. LDVL >= 1; and *> If JOB = 'E' or 'B', LDVL >= N. *> \endverbatim *> *> \param[in] VR *> \verbatim *> VR is COMPLEX array, dimension (LDVR,M) *> IF JOB = 'E' or 'B', VR must contain right eigenvectors of *> (A, B), corresponding to the eigenpairs specified by HOWMNY *> and SELECT. The eigenvectors must be stored in consecutive *> columns of VR, as returned by CTGEVC. *> If JOB = 'V', VR is not referenced. *> \endverbatim *> *> \param[in] LDVR *> \verbatim *> LDVR is INTEGER *> The leading dimension of the array VR. LDVR >= 1; *> If JOB = 'E' or 'B', LDVR >= N. *> \endverbatim *> *> \param[out] S *> \verbatim *> S is REAL array, dimension (MM) *> If JOB = 'E' or 'B', the reciprocal condition numbers of the *> selected eigenvalues, stored in consecutive elements of the *> array. *> If JOB = 'V', S is not referenced. *> \endverbatim *> *> \param[out] DIF *> \verbatim *> DIF is REAL array, dimension (MM) *> If JOB = 'V' or 'B', the estimated reciprocal condition *> numbers of the selected eigenvectors, stored in consecutive *> elements of the array. *> If the eigenvalues cannot be reordered to compute DIF(j), *> DIF(j) is set to 0; this can only occur when the true value *> would be very small anyway. *> For each eigenvalue/vector specified by SELECT, DIF stores *> a Frobenius norm-based estimate of Difl. *> If JOB = 'E', DIF is not referenced. *> \endverbatim *> *> \param[in] MM *> \verbatim *> MM is INTEGER *> The number of elements in the arrays S and DIF. MM >= M. *> \endverbatim *> *> \param[out] M *> \verbatim *> M is INTEGER *> The number of elements of the arrays S and DIF used to store *> the specified condition numbers; for each selected eigenvalue *> one element is used. If HOWMNY = 'A', M is set to N. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= max(1,N). *> If JOB = 'V' or 'B', LWORK >= max(1,2*N*N). *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (N+2) *> If JOB = 'E', IWORK is not referenced. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: Successful exit *> < 0: If INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup tgsna * *> \par Further Details: * ===================== *> *> \verbatim *> *> The reciprocal of the condition number of the i-th generalized *> eigenvalue w = (a, b) is defined as *> *> S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v)) *> *> where u and v are the right and left eigenvectors of (A, B) *> corresponding to w; |z| denotes the absolute value of the complex *> number, and norm(u) denotes the 2-norm of the vector u. The pair *> (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the *> matrix pair (A, B). If both a and b equal zero, then (A,B) is *> singular and S(I) = -1 is returned. *> *> An approximate error bound on the chordal distance between the i-th *> computed generalized eigenvalue w and the corresponding exact *> eigenvalue lambda is *> *> chord(w, lambda) <= EPS * norm(A, B) / S(I), *> *> where EPS is the machine precision. *> *> The reciprocal of the condition number of the right eigenvector u *> and left eigenvector v corresponding to the generalized eigenvalue w *> is defined as follows. Suppose *> *> (A, B) = ( a * ) ( b * ) 1 *> ( 0 A22 ),( 0 B22 ) n-1 *> 1 n-1 1 n-1 *> *> Then the reciprocal condition number DIF(I) is *> *> Difl[(a, b), (A22, B22)] = sigma-min( Zl ) *> *> where sigma-min(Zl) denotes the smallest singular value of *> *> Zl = [ kron(a, In-1) -kron(1, A22) ] *> [ kron(b, In-1) -kron(1, B22) ]. *> *> Here In-1 is the identity matrix of size n-1 and X**H is the conjugate *> transpose of X. kron(X, Y) is the Kronecker product between the *> matrices X and Y. *> *> We approximate the smallest singular value of Zl with an upper *> bound. This is done by CLATDF. *> *> An approximate error bound for a computed eigenvector VL(i) or *> VR(i) is given by *> *> EPS * norm(A, B) / DIF(i). *> *> See ref. [2-3] for more details and further references. *> \endverbatim * *> \par Contributors: * ================== *> *> Bo Kagstrom and Peter Poromaa, Department of Computing Science, *> Umea University, S-901 87 Umea, Sweden. * *> \par References: * ================ *> *> \verbatim *> *> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the *> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in *> M.S. Moonen et al (eds), Linear Algebra for Large Scale and *> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. *> *> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified *> Eigenvalues of a Regular Matrix Pair (A, B) and Condition *> Estimation: Theory, Algorithms and Software, Report *> UMINF - 94.04, Department of Computing Science, Umea University, *> S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. *> To appear in Numerical Algorithms, 1996. *> *> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software *> for Solving the Generalized Sylvester Equation and Estimating the *> Separation between Regular Matrix Pairs, Report UMINF - 93.23, *> Department of Computing Science, Umea University, S-901 87 Umea, *> Sweden, December 1993, Revised April 1994, Also as LAPACK Working *> Note 75. *> To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996. *> \endverbatim *> * ===================================================================== SUBROUTINE CTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, $ LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK, $ IWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER HOWMNY, JOB INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N * .. * .. Array Arguments .. LOGICAL SELECT( * ) INTEGER IWORK( * ) REAL DIF( * ), S( * ) COMPLEX A( LDA, * ), B( LDB, * ), VL( LDVL, * ), $ VR( LDVR, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE INTEGER IDIFJB PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, IDIFJB = 3 ) * .. * .. Local Scalars .. LOGICAL LQUERY, SOMCON, WANTBH, WANTDF, WANTS INTEGER I, IERR, IFST, ILST, K, KS, LWMIN, N1, N2 REAL BIGNUM, COND, EPS, LNRM, RNRM, SCALE, SMLNUM COMPLEX YHAX, YHBX * .. * .. Local Arrays .. COMPLEX DUMMY( 1 ), DUMMY1( 1 ) * .. * .. External Functions .. LOGICAL LSAME REAL SCNRM2, SLAMCH, SLAPY2, $ SROUNDUP_LWORK COMPLEX CDOTC EXTERNAL LSAME, SCNRM2, SLAMCH, $ SLAPY2, SROUNDUP_LWORK, $ CDOTC * .. * .. External Subroutines .. EXTERNAL CGEMV, CLACPY, CTGEXC, CTGSYL, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, CMPLX, MAX * .. * .. Executable Statements .. * * Decode and test the input parameters * WANTBH = LSAME( JOB, 'B' ) WANTS = LSAME( JOB, 'E' ) .OR. WANTBH WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH * SOMCON = LSAME( HOWMNY, 'S' ) * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) * IF( .NOT.WANTS .AND. .NOT.WANTDF ) THEN INFO = -1 ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -6 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 ELSE IF( WANTS .AND. LDVL.LT.N ) THEN INFO = -10 ELSE IF( WANTS .AND. LDVR.LT.N ) THEN INFO = -12 ELSE * * Set M to the number of eigenpairs for which condition numbers * are required, and test MM. * IF( SOMCON ) THEN M = 0 DO 10 K = 1, N IF( SELECT( K ) ) $ M = M + 1 10 CONTINUE ELSE M = N END IF * IF( N.EQ.0 ) THEN LWMIN = 1 ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN LWMIN = 2*N*N ELSE LWMIN = N END IF WORK( 1 ) = SROUNDUP_LWORK(LWMIN) * IF( MM.LT.M ) THEN INFO = -15 ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN INFO = -18 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CTGSNA', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Get machine constants * EPS = SLAMCH( 'P' ) SMLNUM = SLAMCH( 'S' ) / EPS BIGNUM = ONE / SMLNUM KS = 0 DO 20 K = 1, N * * Determine whether condition numbers are required for the k-th * eigenpair. * IF( SOMCON ) THEN IF( .NOT.SELECT( K ) ) $ GO TO 20 END IF * KS = KS + 1 * IF( WANTS ) THEN * * Compute the reciprocal condition number of the k-th * eigenvalue. * RNRM = SCNRM2( N, VR( 1, KS ), 1 ) LNRM = SCNRM2( N, VL( 1, KS ), 1 ) CALL CGEMV( 'N', N, N, CMPLX( ONE, ZERO ), A, LDA, $ VR( 1, KS ), 1, CMPLX( ZERO, ZERO ), WORK, 1 ) YHAX = CDOTC( N, WORK, 1, VL( 1, KS ), 1 ) CALL CGEMV( 'N', N, N, CMPLX( ONE, ZERO ), B, LDB, $ VR( 1, KS ), 1, CMPLX( ZERO, ZERO ), WORK, 1 ) YHBX = CDOTC( N, WORK, 1, VL( 1, KS ), 1 ) COND = SLAPY2( ABS( YHAX ), ABS( YHBX ) ) IF( COND.EQ.ZERO ) THEN S( KS ) = -ONE ELSE S( KS ) = COND / ( RNRM*LNRM ) END IF END IF * IF( WANTDF ) THEN IF( N.EQ.1 ) THEN DIF( KS ) = SLAPY2( ABS( A( 1, 1 ) ), ABS( B( 1, $ 1 ) ) ) ELSE * * Estimate the reciprocal condition number of the k-th * eigenvectors. * * Copy the matrix (A, B) to the array WORK and move the * (k,k)th pair to the (1,1) position. * CALL CLACPY( 'Full', N, N, A, LDA, WORK, N ) CALL CLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N ) IFST = K ILST = 1 * CALL CTGEXC( .FALSE., .FALSE., N, WORK, N, $ WORK( N*N+1 ), $ N, DUMMY, 1, DUMMY1, 1, IFST, ILST, IERR ) * IF( IERR.GT.0 ) THEN * * Ill-conditioned problem - swap rejected. * DIF( KS ) = ZERO ELSE * * Reordering successful, solve generalized Sylvester * equation for R and L, * A22 * R - L * A11 = A12 * B22 * R - L * B11 = B12, * and compute estimate of Difl[(A11,B11), (A22, B22)]. * N1 = 1 N2 = N - N1 I = N*N + 1 CALL CTGSYL( 'N', IDIFJB, N2, N1, $ WORK( N*N1+N1+1 ), $ N, WORK, N, WORK( N1+1 ), N, $ WORK( N*N1+N1+I ), N, WORK( I ), N, $ WORK( N1+I ), N, SCALE, DIF( KS ), DUMMY, $ 1, IWORK, IERR ) END IF END IF END IF * 20 CONTINUE WORK( 1 ) = SROUNDUP_LWORK(LWMIN) RETURN * * End of CTGSNA * END