numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/cungtsqr_row.f | 11819B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
*> \brief \b CUNGTSQR_ROW * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CUNGTSQR_ROW + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunrgtsqr_row.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunrgtsqr_row.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunrgtsqr_row.f"> *> [TXT]</a> *> \endhtmlonly *> * Definition: * =========== * * SUBROUTINE CUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK, * $ LWORK, INFO ) * IMPLICIT NONE * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB * .. * .. Array Arguments .. * COMPLEX A( LDA, * ), T( LDT, * ), WORK( * ) * .. * *> \par Purpose: * ============= *> *> \verbatim *> *> CUNGTSQR_ROW generates an M-by-N complex matrix Q_out with *> orthonormal columns from the output of CLATSQR. These N orthonormal *> columns are the first N columns of a product of complex unitary *> matrices Q(k)_in of order M, which are returned by CLATSQR in *> a special format. *> *> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ). *> *> The input matrices Q(k)_in are stored in row and column blocks in A. *> See the documentation of CLATSQR for more details on the format of *> Q(k)_in, where each Q(k)_in is represented by block Householder *> transformations. This routine calls an auxiliary routine CLARFB_GETT, *> where the computation is performed on each individual block. The *> algorithm first sweeps NB-sized column blocks from the right to left *> starting in the bottom row block and continues to the top row block *> (hence _ROW in the routine name). This sweep is in reverse order of *> the order in which CLATSQR generates the output blocks. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. M >= N >= 0. *> \endverbatim *> *> \param[in] MB *> \verbatim *> MB is INTEGER *> The row block size used by CLATSQR to return *> arrays A and T. MB > N. *> (Note that if MB > M, then M is used instead of MB *> as the row block size). *> \endverbatim *> *> \param[in] NB *> \verbatim *> NB is INTEGER *> The column block size used by CLATSQR to return *> arrays A and T. NB >= 1. *> (Note that if NB > N, then N is used instead of NB *> as the column block size). *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> *> On entry: *> *> The elements on and above the diagonal are not used as *> input. The elements below the diagonal represent the unit *> lower-trapezoidal blocked matrix V computed by CLATSQR *> that defines the input matrices Q_in(k) (ones on the *> diagonal are not stored). See CLATSQR for more details. *> *> On exit: *> *> The array A contains an M-by-N orthonormal matrix Q_out, *> i.e the columns of A are orthogonal unit vectors. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[in] T *> \verbatim *> T is COMPLEX array, *> dimension (LDT, N * NIRB) *> where NIRB = Number_of_input_row_blocks *> = MAX( 1, CEIL((M-N)/(MB-N)) ) *> Let NICB = Number_of_input_col_blocks *> = CEIL(N/NB) *> *> The upper-triangular block reflectors used to define the *> input matrices Q_in(k), k=(1:NIRB*NICB). The block *> reflectors are stored in compact form in NIRB block *> reflector sequences. Each of the NIRB block reflector *> sequences is stored in a larger NB-by-N column block of T *> and consists of NICB smaller NB-by-NB upper-triangular *> column blocks. See CLATSQR for more details on the format *> of T. *> \endverbatim *> *> \param[in] LDT *> \verbatim *> LDT is INTEGER *> The leading dimension of the array T. *> LDT >= max(1,min(NB,N)). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. *> LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)), *> where NBLOCAL=MIN(NB,N). *> If LWORK = -1, then a workspace query is assumed. *> The routine only calculates the optimal size of the WORK *> array, returns this value as the first entry of the WORK *> array, and no error message related to LWORK is issued *> by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim *> * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup ungtsqr_row * *> \par Contributors: * ================== *> *> \verbatim *> *> November 2020, Igor Kozachenko, *> Computer Science Division, *> University of California, Berkeley *> *> \endverbatim *> * ===================================================================== SUBROUTINE CUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK, $ LWORK, INFO ) IMPLICIT NONE * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB * .. * .. Array Arguments .. COMPLEX A( LDA, * ), T( LDT, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX CONE, CZERO PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ), $ CZERO = ( 0.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. LOGICAL LQUERY INTEGER NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM, $ LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB, $ KB, KB_LAST, KNB, MB1 * .. * .. Local Arrays .. COMPLEX DUMMY( 1, 1 ) * .. * .. External Subroutines .. EXTERNAL CLARFB_GETT, CLASET, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 LQUERY = LWORK.EQ.-1 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 .OR. M.LT.N ) THEN INFO = -2 ELSE IF( MB.LE.N ) THEN INFO = -3 ELSE IF( NB.LT.1 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -6 ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN INFO = -8 ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN INFO = -10 END IF * NBLOCAL = MIN( NB, N ) * * Determine the workspace size. * IF( INFO.EQ.0 ) THEN LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) ) END IF * * Handle error in the input parameters and handle the workspace query. * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CUNGTSQR_ROW', -INFO ) RETURN ELSE IF ( LQUERY ) THEN WORK( 1 ) = CMPLX( LWORKOPT ) RETURN END IF * * Quick return if possible * IF( MIN( M, N ).EQ.0 ) THEN WORK( 1 ) = CMPLX( LWORKOPT ) RETURN END IF * * (0) Set the upper-triangular part of the matrix A to zero and * its diagonal elements to one. * CALL CLASET('U', M, N, CZERO, CONE, A, LDA ) * * KB_LAST is the column index of the last column block reflector * in the matrices T and V. * KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1 * * * (1) Bottom-up loop over row blocks of A, except the top row block. * NOTE: If MB>=M, then the loop is never executed. * IF ( MB.LT.M ) THEN * * MB2 is the row blocking size for the row blocks before the * first top row block in the matrix A. IB is the row index for * the row blocks in the matrix A before the first top row block. * IB_BOTTOM is the row index for the last bottom row block * in the matrix A. JB_T is the column index of the corresponding * column block in the matrix T. * * Initialize variables. * * NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A * including the first row block. * MB2 = MB - N M_PLUS_ONE = M + 1 ITMP = ( M - MB - 1 ) / MB2 IB_BOTTOM = ITMP * MB2 + MB + 1 NUM_ALL_ROW_BLOCKS = ITMP + 2 JB_T = NUM_ALL_ROW_BLOCKS * N + 1 * DO IB = IB_BOTTOM, MB+1, -MB2 * * Determine the block size IMB for the current row block * in the matrix A. * IMB = MIN( M_PLUS_ONE - IB, MB2 ) * * Determine the column index JB_T for the current column block * in the matrix T. * JB_T = JB_T - N * * Apply column blocks of H in the row block from right to left. * * KB is the column index of the current column block reflector * in the matrices T and V. * DO KB = KB_LAST, 1, -NBLOCAL * * Determine the size of the current column block KNB in * the matrices T and V. * KNB = MIN( NBLOCAL, N - KB + 1 ) * CALL CLARFB_GETT( 'I', IMB, N-KB+1, KNB, $ T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA, $ A( IB, KB ), LDA, WORK, KNB ) * END DO * END DO * END IF * * (2) Top row block of A. * NOTE: If MB>=M, then we have only one row block of A of size M * and we work on the entire matrix A. * MB1 = MIN( MB, M ) * * Apply column blocks of H in the top row block from right to left. * * KB is the column index of the current block reflector in * the matrices T and V. * DO KB = KB_LAST, 1, -NBLOCAL * * Determine the size of the current column block KNB in * the matrices T and V. * KNB = MIN( NBLOCAL, N - KB + 1 ) * IF( MB1-KB-KNB+1.EQ.0 ) THEN * * In SLARFB_GETT parameters, when M=0, then the matrix B * does not exist, hence we need to pass a dummy array * reference DUMMY(1,1) to B with LDDUMMY=1. * CALL CLARFB_GETT( 'N', 0, N-KB+1, KNB, $ T( 1, KB ), LDT, A( KB, KB ), LDA, $ DUMMY( 1, 1 ), 1, WORK, KNB ) ELSE CALL CLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB, $ T( 1, KB ), LDT, A( KB, KB ), LDA, $ A( KB+KNB, KB), LDA, WORK, KNB ) END IF * END DO * WORK( 1 ) = CMPLX( LWORKOPT ) RETURN * * End of CUNGTSQR_ROW * END