numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/ddisna.f 6970B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
*> \brief \b DDISNA
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DDISNA + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ddisna.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ddisna.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ddisna.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DDISNA( JOB, M, N, D, SEP, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          JOB
*       INTEGER            INFO, M, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   D( * ), SEP( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DDISNA computes the reciprocal condition numbers for the eigenvectors
*> of a real symmetric or complex Hermitian matrix or for the left or
*> right singular vectors of a general m-by-n matrix. The reciprocal
*> condition number is the 'gap' between the corresponding eigenvalue or
*> singular value and the nearest other one.
*>
*> The bound on the error, measured by angle in radians, in the I-th
*> computed vector is given by
*>
*>        DLAMCH( 'E' ) * ( ANORM / SEP( I ) )
*>
*> where ANORM = 2-norm(A) = max( abs( D(j) ) ).  SEP(I) is not allowed
*> to be smaller than DLAMCH( 'E' )*ANORM in order to limit the size of
*> the error bound.
*>
*> DDISNA may also be used to compute error bounds for eigenvectors of
*> the generalized symmetric definite eigenproblem.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOB
*> \verbatim
*>          JOB is CHARACTER*1
*>          Specifies for which problem the reciprocal condition numbers
*>          should be computed:
*>          = 'E':  the eigenvectors of a symmetric/Hermitian matrix;
*>          = 'L':  the left singular vectors of a general matrix;
*>          = 'R':  the right singular vectors of a general matrix.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          If JOB = 'L' or 'R', the number of columns of the matrix,
*>          in which case N >= 0. Ignored if JOB = 'E'.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (M) if JOB = 'E'
*>                              dimension (min(M,N)) if JOB = 'L' or 'R'
*>          The eigenvalues (if JOB = 'E') or singular values (if JOB =
*>          'L' or 'R') of the matrix, in either increasing or decreasing
*>          order. If singular values, they must be non-negative.
*> \endverbatim
*>
*> \param[out] SEP
*> \verbatim
*>          SEP is DOUBLE PRECISION array, dimension (M) if JOB = 'E'
*>                               dimension (min(M,N)) if JOB = 'L' or 'R'
*>          The reciprocal condition numbers of the vectors.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup disna
*
*  =====================================================================
      SUBROUTINE DDISNA( JOB, M, N, D, SEP, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          JOB
      INTEGER            INFO, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), SEP( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            DECR, EIGEN, INCR, LEFT, RIGHT, SING
      INTEGER            I, K
      DOUBLE PRECISION   ANORM, EPS, NEWGAP, OLDGAP, SAFMIN, THRESH
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      EIGEN = LSAME( JOB, 'E' )
      LEFT = LSAME( JOB, 'L' )
      RIGHT = LSAME( JOB, 'R' )
      SING = LEFT .OR. RIGHT
      IF( EIGEN ) THEN
         K = M
      ELSE IF( SING ) THEN
         K = MIN( M, N )
      END IF
      IF( .NOT.EIGEN .AND. .NOT.SING ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( K.LT.0 ) THEN
         INFO = -3
      ELSE
         INCR = .TRUE.
         DECR = .TRUE.
         DO 10 I = 1, K - 1
            IF( INCR )
     $         INCR = INCR .AND. D( I ).LE.D( I+1 )
            IF( DECR )
     $         DECR = DECR .AND. D( I ).GE.D( I+1 )
   10    CONTINUE
         IF( SING .AND. K.GT.0 ) THEN
            IF( INCR )
     $         INCR = INCR .AND. ZERO.LE.D( 1 )
            IF( DECR )
     $         DECR = DECR .AND. D( K ).GE.ZERO
         END IF
         IF( .NOT.( INCR .OR. DECR ) )
     $      INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DDISNA', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( K.EQ.0 )
     $   RETURN
*
*     Compute reciprocal condition numbers
*
      IF( K.EQ.1 ) THEN
         SEP( 1 ) = DLAMCH( 'O' )
      ELSE
         OLDGAP = ABS( D( 2 )-D( 1 ) )
         SEP( 1 ) = OLDGAP
         DO 20 I = 2, K - 1
            NEWGAP = ABS( D( I+1 )-D( I ) )
            SEP( I ) = MIN( OLDGAP, NEWGAP )
            OLDGAP = NEWGAP
   20    CONTINUE
         SEP( K ) = OLDGAP
      END IF
      IF( SING ) THEN
         IF( ( LEFT .AND. M.GT.N ) .OR. ( RIGHT .AND. M.LT.N ) ) THEN
            IF( INCR )
     $         SEP( 1 ) = MIN( SEP( 1 ), D( 1 ) )
            IF( DECR )
     $         SEP( K ) = MIN( SEP( K ), D( K ) )
         END IF
      END IF
*
*     Ensure that reciprocal condition numbers are not less than
*     threshold, in order to limit the size of the error bound
*
      EPS = DLAMCH( 'E' )
      SAFMIN = DLAMCH( 'S' )
      ANORM = MAX( ABS( D( 1 ) ), ABS( D( K ) ) )
      IF( ANORM.EQ.ZERO ) THEN
         THRESH = EPS
      ELSE
         THRESH = MAX( EPS*ANORM, SAFMIN )
      END IF
      DO 30 I = 1, K
         SEP( I ) = MAX( SEP( I ), THRESH )
   30 CONTINUE
*
      RETURN
*
*     End of DDISNA
*
      END