numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/dgesvj.f 70123B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
*> \brief \b DGESVJ
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGESVJ + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvj.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvj.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvj.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V,
*                          LDV, WORK, LWORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N
*       CHARACTER*1        JOBA, JOBU, JOBV
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( LDA, * ), SVA( N ), V( LDV, * ),
*      $                   WORK( LWORK )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DGESVJ computes the singular value decomposition (SVD) of a real
*> M-by-N matrix A, where M >= N. The SVD of A is written as
*>                                    [++]   [xx]   [x0]   [xx]
*>              A = U * SIGMA * V^t,  [++] = [xx] * [ox] * [xx]
*>                                    [++]   [xx]
*> where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal
*> matrix, and V is an N-by-N orthogonal matrix. The diagonal elements
*> of SIGMA are the singular values of A. The columns of U and V are the
*> left and the right singular vectors of A, respectively.
*> DGESVJ can sometimes compute tiny singular values and their singular vectors much
*> more accurately than other SVD routines, see below under Further Details.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBA
*> \verbatim
*>          JOBA is CHARACTER*1
*>          Specifies the structure of A.
*>          = 'L': The input matrix A is lower triangular;
*>          = 'U': The input matrix A is upper triangular;
*>          = 'G': The input matrix A is general M-by-N matrix, M >= N.
*> \endverbatim
*>
*> \param[in] JOBU
*> \verbatim
*>          JOBU is CHARACTER*1
*>          Specifies whether to compute the left singular vectors
*>          (columns of U):
*>          = 'U': The left singular vectors corresponding to the nonzero
*>                 singular values are computed and returned in the leading
*>                 columns of A. See more details in the description of A.
*>                 The default numerical orthogonality threshold is set to
*>                 approximately TOL=CTOL*EPS, CTOL=DSQRT(M), EPS=DLAMCH('E').
*>          = 'C': Analogous to JOBU='U', except that user can control the
*>                 level of numerical orthogonality of the computed left
*>                 singular vectors. TOL can be set to TOL = CTOL*EPS, where
*>                 CTOL is given on input in the array WORK.
*>                 No CTOL smaller than ONE is allowed. CTOL greater
*>                 than 1 / EPS is meaningless. The option 'C'
*>                 can be used if M*EPS is satisfactory orthogonality
*>                 of the computed left singular vectors, so CTOL=M could
*>                 save few sweeps of Jacobi rotations.
*>                 See the descriptions of A and WORK(1).
*>          = 'N': The matrix U is not computed. However, see the
*>                 description of A.
*> \endverbatim
*>
*> \param[in] JOBV
*> \verbatim
*>          JOBV is CHARACTER*1
*>          Specifies whether to compute the right singular vectors, that
*>          is, the matrix V:
*>          = 'V':  the matrix V is computed and returned in the array V
*>          = 'A':  the Jacobi rotations are applied to the MV-by-N
*>                  array V. In other words, the right singular vector
*>                  matrix V is not computed explicitly, instead it is
*>                  applied to an MV-by-N matrix initially stored in the
*>                  first MV rows of V.
*>          = 'N':  the matrix V is not computed and the array V is not
*>                  referenced
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the input matrix A. 1/DLAMCH('E') > M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the input matrix A.
*>          M >= N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
*>          On entry, the M-by-N matrix A.
*>          On exit :
*>          If JOBU = 'U' .OR. JOBU = 'C' :
*>                 If INFO = 0 :
*>                 RANKA orthonormal columns of U are returned in the
*>                 leading RANKA columns of the array A. Here RANKA <= N
*>                 is the number of computed singular values of A that are
*>                 above the underflow threshold DLAMCH('S'). The singular
*>                 vectors corresponding to underflowed or zero singular
*>                 values are not computed. The value of RANKA is returned
*>                 in the array WORK as RANKA=NINT(WORK(2)). Also see the
*>                 descriptions of SVA and WORK. The computed columns of U
*>                 are mutually numerically orthogonal up to approximately
*>                 TOL=DSQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU = 'C'),
*>                 see the description of JOBU.
*>                 If INFO > 0 :
*>                 the procedure DGESVJ did not converge in the given number
*>                 of iterations (sweeps). In that case, the computed
*>                 columns of U may not be orthogonal up to TOL. The output
*>                 U (stored in A), SIGMA (given by the computed singular
*>                 values in SVA(1:N)) and V is still a decomposition of the
*>                 input matrix A in the sense that the residual
*>                 ||A-SCALE*U*SIGMA*V^T||_2 / ||A||_2 is small.
*>
*>          If JOBU = 'N' :
*>                 If INFO = 0 :
*>                 Note that the left singular vectors are 'for free' in the
*>                 one-sided Jacobi SVD algorithm. However, if only the
*>                 singular values are needed, the level of numerical
*>                 orthogonality of U is not an issue and iterations are
*>                 stopped when the columns of the iterated matrix are
*>                 numerically orthogonal up to approximately M*EPS. Thus,
*>                 on exit, A contains the columns of U scaled with the
*>                 corresponding singular values.
*>                 If INFO > 0 :
*>                 the procedure DGESVJ did not converge in the given number
*>                 of iterations (sweeps).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] SVA
*> \verbatim
*>          SVA is DOUBLE PRECISION array, dimension (N)
*>          On exit :
*>          If INFO = 0 :
*>          depending on the value SCALE = WORK(1), we have:
*>                 If SCALE = ONE :
*>                 SVA(1:N) contains the computed singular values of A.
*>                 During the computation SVA contains the Euclidean column
*>                 norms of the iterated matrices in the array A.
*>                 If SCALE .NE. ONE :
*>                 The singular values of A are SCALE*SVA(1:N), and this
*>                 factored representation is due to the fact that some of the
*>                 singular values of A might underflow or overflow.
*>          If INFO > 0 :
*>          the procedure DGESVJ did not converge in the given number of
*>          iterations (sweeps) and SCALE*SVA(1:N) may not be accurate.
*> \endverbatim
*>
*> \param[in] MV
*> \verbatim
*>          MV is INTEGER
*>          If JOBV = 'A', then the product of Jacobi rotations in DGESVJ
*>          is applied to the first MV rows of V. See the description of JOBV.
*> \endverbatim
*>
*> \param[in,out] V
*> \verbatim
*>          V is DOUBLE PRECISION array, dimension (LDV,N)
*>          If JOBV = 'V', then V contains on exit the N-by-N matrix of
*>                         the right singular vectors;
*>          If JOBV = 'A', then V contains the product of the computed right
*>                         singular vector matrix and the initial matrix in
*>                         the array V.
*>          If JOBV = 'N', then V is not referenced.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*>          LDV is INTEGER
*>          The leading dimension of the array V, LDV >= 1.
*>          If JOBV = 'V', then LDV >= max(1,N).
*>          If JOBV = 'A', then LDV >= max(1,MV) .
*> \endverbatim
*>
*> \param[in,out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*>          On entry :
*>          If JOBU = 'C' :
*>          WORK(1) = CTOL, where CTOL defines the threshold for convergence.
*>                    The process stops if all columns of A are mutually
*>                    orthogonal up to CTOL*EPS, EPS=DLAMCH('E').
*>                    It is required that CTOL >= ONE, i.e. it is not
*>                    allowed to force the routine to obtain orthogonality
*>                    below EPS.
*>          On exit :
*>          WORK(1) = SCALE is the scaling factor such that SCALE*SVA(1:N)
*>                    are the computed singular values of A.
*>                    (See description of SVA().)
*>          WORK(2) = NINT(WORK(2)) is the number of the computed nonzero
*>                    singular values.
*>          WORK(3) = NINT(WORK(3)) is the number of the computed singular
*>                    values that are larger than the underflow threshold.
*>          WORK(4) = NINT(WORK(4)) is the number of sweeps of Jacobi
*>                    rotations needed for numerical convergence.
*>          WORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep.
*>                    This is useful information in cases when DGESVJ did
*>                    not converge, as it can be used to estimate whether
*>                    the output is still useful and for post festum analysis.
*>          WORK(6) = the largest absolute value over all sines of the
*>                    Jacobi rotation angles in the last sweep. It can be
*>                    useful for a post festum analysis.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The length of the array WORK.
*>          LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MAX(6,M+N), otherwise.
*>
*>          If on entry LWORK = -1, then a workspace query is assumed and
*>          no computation is done; WORK(1) is set to the minial (and optimal)
*>          length of WORK.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, then the i-th argument had an illegal value
*>          > 0:  DGESVJ did not converge in the maximal allowed number (30)
*>                of sweeps. The output may still be useful. See the
*>                description of WORK.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup gesvj
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The orthogonal N-by-N matrix V is obtained as a product of Jacobi plane
*>  rotations. The rotations are implemented as fast scaled rotations of
*>  Anda and Park [1]. In the case of underflow of the Jacobi angle, a
*>  modified Jacobi transformation of Drmac [4] is used. Pivot strategy uses
*>  column interchanges of de Rijk [2]. The relative accuracy of the computed
*>  singular values and the accuracy of the computed singular vectors (in
*>  angle metric) is as guaranteed by the theory of Demmel and Veselic [3].
*>  The condition number that determines the accuracy in the full rank case
*>  is essentially min_{D=diag} kappa(A*D), where kappa(.) is the
*>  spectral condition number. The best performance of this Jacobi SVD
*>  procedure is achieved if used in an  accelerated version of Drmac and
*>  Veselic [5,6], and it is the kernel routine in the SIGMA library [7].
*>  Some tuning parameters (marked with [TP]) are available for the
*>  implementer.
*>  The computational range for the nonzero singular values is the  machine
*>  number interval ( UNDERFLOW , OVERFLOW ). In extreme cases, even
*>  denormalized singular values can be computed with the corresponding
*>  gradual loss of accurate digits.
*> \endverbatim
*
*> \par Contributors:
*  ==================
*>
*> \verbatim
*>
*>  ============
*>
*>  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
*> \endverbatim
*
*> \par References:
*  ================
*>
*> \verbatim
*>
*> [1] A. A. Anda and H. Park: Fast plane rotations with dynamic scaling.
*>     SIAM J. matrix Anal. Appl., Vol. 15 (1994), pp. 162-174.
*> [2] P. P. M. De Rijk: A one-sided Jacobi algorithm for computing the
*>     singular value decomposition on a vector computer.
*>     SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371.
*> [3] J. Demmel and K. Veselic: Jacobi method is more accurate than QR.
*> [4] Z. Drmac: Implementation of Jacobi rotations for accurate singular
*>     value computation in floating point arithmetic.
*>     SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222.
*> [5] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
*>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
*>     LAPACK Working note 169.
*> [6] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
*>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
*>     LAPACK Working note 170.
*> [7] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
*>     QSVD, (H,K)-SVD computations.
*>     Department of Mathematics, University of Zagreb, 2008.
*> \endverbatim
*
*>  \par Bugs, examples and comments:
*   =================================
*>
*> \verbatim
*>  ===========================
*>  Please report all bugs and send interesting test examples and comments to
*>  drmac@math.hr. Thank you.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE DGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V,
     $                   LDV, WORK, LWORK, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDV, LWORK, M, MV, N
      CHARACTER*1        JOBA, JOBU, JOBV
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), SVA( N ), V( LDV, * ),
     $                   WORK( LWORK )
*     ..
*
*  =====================================================================
*
*     .. Local Parameters ..
      DOUBLE PRECISION   ZERO, HALF, ONE
      PARAMETER          ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0)
      INTEGER            NSWEEP
      PARAMETER          ( NSWEEP = 30 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,
     $                   BIGTHETA, CS, CTOL, EPSLN, LARGE, MXAAPQ,
     $                   MXSINJ, ROOTBIG, ROOTEPS, ROOTSFMIN, ROOTTOL,
     $                   SKL, SFMIN, SMALL, SN, T, TEMP1, THETA,
     $                   THSIGN, TOL
      INTEGER            BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
     $                   ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, N2, N34,
     $                   N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP,
     $                   SWBAND, MINMN, LWMIN
      LOGICAL            APPLV, GOSCALE, LOWER, LQUERY, LSVEC, NOSCALE,
     $                   ROTOK, RSVEC, UCTOL, UPPER
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   FASTR( 5 )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DABS, MAX, MIN, DBLE, DSIGN, DSQRT
*     ..
*     .. External Functions ..
*     ..
*     from BLAS
      DOUBLE PRECISION   DDOT, DNRM2
      EXTERNAL           DDOT, DNRM2
      INTEGER            IDAMAX
      EXTERNAL           IDAMAX
*     from LAPACK
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
*     ..
*     from BLAS
      EXTERNAL           DAXPY, DCOPY, DROTM, DSCAL, DSWAP
*     from LAPACK
      EXTERNAL           DLASCL, DLASET, DLASSQ, XERBLA
*
      EXTERNAL           DGSVJ0, DGSVJ1
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      LSVEC = LSAME( JOBU, 'U' )
      UCTOL = LSAME( JOBU, 'C' )
      RSVEC = LSAME( JOBV, 'V' )
      APPLV = LSAME( JOBV, 'A' )
      UPPER = LSAME( JOBA, 'U' )
      LOWER = LSAME( JOBA, 'L' )
*
      MINMN = MIN( M, N )
      IF( MINMN.EQ.0 ) THEN
         LWMIN = 1
      ELSE
         LWMIN = MAX( 6, M+N )
      END IF
*
      LQUERY = ( LWORK.EQ.-1 )
      IF( .NOT.( UPPER .OR. LOWER .OR. LSAME( JOBA, 'G' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( LSVEC .OR.
     $         UCTOL .OR.
     $         LSAME( JOBU, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( RSVEC .OR.
     $         APPLV .OR.
     $         LSAME( JOBV, 'N' ) ) ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
         INFO = -5
      ELSE IF( LDA.LT.M ) THEN
         INFO = -7
      ELSE IF( MV.LT.0 ) THEN
         INFO = -9
      ELSE IF( ( RSVEC .AND. ( LDV.LT.N ) ) .OR.
     $         ( APPLV .AND. ( LDV.LT.MV ) ) ) THEN
         INFO = -11
      ELSE IF( UCTOL .AND. ( WORK( 1 ).LE.ONE ) ) THEN
         INFO = -12
      ELSE IF( LWORK.LT.LWMIN .AND. ( .NOT.LQUERY ) ) THEN
         INFO = -13
      ELSE
         INFO = 0
      END IF
*
*     #:(
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGESVJ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         WORK( 1 ) = LWMIN
         RETURN
      END IF
*
* #:) Quick return for void matrix
*
      IF( MINMN.EQ.0 ) RETURN
*
*     Set numerical parameters
*     The stopping criterion for Jacobi rotations is
*
*     max_{i<>j}|A(:,i)^T * A(:,j)|/(||A(:,i)||*||A(:,j)||) < CTOL*EPS
*
*     where EPS is the round-off and CTOL is defined as follows:
*
      IF( UCTOL ) THEN
*        ... user controlled
         CTOL = WORK( 1 )
      ELSE
*        ... default
         IF( LSVEC .OR. RSVEC .OR. APPLV ) THEN
            CTOL = DSQRT( DBLE( M ) )
         ELSE
            CTOL = DBLE( M )
         END IF
      END IF
*     ... and the machine dependent parameters are
*[!]  (Make sure that DLAMCH() works properly on the target machine.)
*
      EPSLN = DLAMCH( 'Epsilon' )
      ROOTEPS = DSQRT( EPSLN )
      SFMIN = DLAMCH( 'SafeMinimum' )
      ROOTSFMIN = DSQRT( SFMIN )
      SMALL = SFMIN / EPSLN
      BIG = DLAMCH( 'Overflow' )
*     BIG         = ONE    / SFMIN
      ROOTBIG = ONE / ROOTSFMIN
      LARGE = BIG / DSQRT( DBLE( M*N ) )
      BIGTHETA = ONE / ROOTEPS
*
      TOL = CTOL*EPSLN
      ROOTTOL = DSQRT( TOL )
*
      IF( DBLE( M )*EPSLN.GE.ONE ) THEN
         INFO = -4
         CALL XERBLA( 'DGESVJ', -INFO )
         RETURN
      END IF
*
*     Initialize the right singular vector matrix.
*
      IF( RSVEC ) THEN
         MVL = N
         CALL DLASET( 'A', MVL, N, ZERO, ONE, V, LDV )
      ELSE IF( APPLV ) THEN
         MVL = MV
      END IF
      RSVEC = RSVEC .OR. APPLV
*
*     Initialize SVA( 1:N ) = ( ||A e_i||_2, i = 1:N )
*(!)  If necessary, scale A to protect the largest singular value
*     from overflow. It is possible that saving the largest singular
*     value destroys the information about the small ones.
*     This initial scaling is almost minimal in the sense that the
*     goal is to make sure that no column norm overflows, and that
*     DSQRT(N)*max_i SVA(i) does not overflow. If INFinite entries
*     in A are detected, the procedure returns with INFO=-6.
*
      SKL= ONE / DSQRT( DBLE( M )*DBLE( N ) )
      NOSCALE = .TRUE.
      GOSCALE = .TRUE.
*
      IF( LOWER ) THEN
*        the input matrix is M-by-N lower triangular (trapezoidal)
         DO 1874 p = 1, N
            AAPP = ZERO
            AAQQ = ONE
            CALL DLASSQ( M-p+1, A( p, p ), 1, AAPP, AAQQ )
            IF( AAPP.GT.BIG ) THEN
               INFO = -6
               CALL XERBLA( 'DGESVJ', -INFO )
               RETURN
            END IF
            AAQQ = DSQRT( AAQQ )
            IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
               SVA( p ) = AAPP*AAQQ
            ELSE
               NOSCALE = .FALSE.
               SVA( p ) = AAPP*( AAQQ*SKL)
               IF( GOSCALE ) THEN
                  GOSCALE = .FALSE.
                  DO 1873 q = 1, p - 1
                     SVA( q ) = SVA( q )*SKL
 1873             CONTINUE
               END IF
            END IF
 1874    CONTINUE
      ELSE IF( UPPER ) THEN
*        the input matrix is M-by-N upper triangular (trapezoidal)
         DO 2874 p = 1, N
            AAPP = ZERO
            AAQQ = ONE
            CALL DLASSQ( p, A( 1, p ), 1, AAPP, AAQQ )
            IF( AAPP.GT.BIG ) THEN
               INFO = -6
               CALL XERBLA( 'DGESVJ', -INFO )
               RETURN
            END IF
            AAQQ = DSQRT( AAQQ )
            IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
               SVA( p ) = AAPP*AAQQ
            ELSE
               NOSCALE = .FALSE.
               SVA( p ) = AAPP*( AAQQ*SKL)
               IF( GOSCALE ) THEN
                  GOSCALE = .FALSE.
                  DO 2873 q = 1, p - 1
                     SVA( q ) = SVA( q )*SKL
 2873             CONTINUE
               END IF
            END IF
 2874    CONTINUE
      ELSE
*        the input matrix is M-by-N general dense
         DO 3874 p = 1, N
            AAPP = ZERO
            AAQQ = ONE
            CALL DLASSQ( M, A( 1, p ), 1, AAPP, AAQQ )
            IF( AAPP.GT.BIG ) THEN
               INFO = -6
               CALL XERBLA( 'DGESVJ', -INFO )
               RETURN
            END IF
            AAQQ = DSQRT( AAQQ )
            IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
               SVA( p ) = AAPP*AAQQ
            ELSE
               NOSCALE = .FALSE.
               SVA( p ) = AAPP*( AAQQ*SKL)
               IF( GOSCALE ) THEN
                  GOSCALE = .FALSE.
                  DO 3873 q = 1, p - 1
                     SVA( q ) = SVA( q )*SKL
 3873             CONTINUE
               END IF
            END IF
 3874    CONTINUE
      END IF
*
      IF( NOSCALE )SKL= ONE
*
*     Move the smaller part of the spectrum from the underflow threshold
*(!)  Start by determining the position of the nonzero entries of the
*     array SVA() relative to ( SFMIN, BIG ).
*
      AAPP = ZERO
      AAQQ = BIG
      DO 4781 p = 1, N
         IF( SVA( p ).NE.ZERO )AAQQ = MIN( AAQQ, SVA( p ) )
         AAPP = MAX( AAPP, SVA( p ) )
 4781 CONTINUE
*
* #:) Quick return for zero matrix
*
      IF( AAPP.EQ.ZERO ) THEN
         IF( LSVEC )CALL DLASET( 'G', M, N, ZERO, ONE, A, LDA )
         WORK( 1 ) = ONE
         WORK( 2 ) = ZERO
         WORK( 3 ) = ZERO
         WORK( 4 ) = ZERO
         WORK( 5 ) = ZERO
         WORK( 6 ) = ZERO
         RETURN
      END IF
*
* #:) Quick return for one-column matrix
*
      IF( N.EQ.1 ) THEN
         IF( LSVEC )CALL DLASCL( 'G', 0, 0, SVA( 1 ), SKL, M, 1,
     $                           A( 1, 1 ), LDA, IERR )
         WORK( 1 ) = ONE / SKL
         IF( SVA( 1 ).GE.SFMIN ) THEN
            WORK( 2 ) = ONE
         ELSE
            WORK( 2 ) = ZERO
         END IF
         WORK( 3 ) = ZERO
         WORK( 4 ) = ZERO
         WORK( 5 ) = ZERO
         WORK( 6 ) = ZERO
         RETURN
      END IF
*
*     Protect small singular values from underflow, and try to
*     avoid underflows/overflows in computing Jacobi rotations.
*
      SN = DSQRT( SFMIN / EPSLN )
      TEMP1 = DSQRT( BIG / DBLE( N ) )
      IF( ( AAPP.LE.SN ) .OR. ( AAQQ.GE.TEMP1 ) .OR.
     $    ( ( SN.LE.AAQQ ) .AND. ( AAPP.LE.TEMP1 ) ) ) THEN
         TEMP1 = MIN( BIG, TEMP1 / AAPP )
*         AAQQ  = AAQQ*TEMP1
*         AAPP  = AAPP*TEMP1
      ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.LE.TEMP1 ) ) THEN
         TEMP1 = MIN( SN / AAQQ, BIG / ( AAPP*DSQRT( DBLE( N ) ) ) )
*         AAQQ  = AAQQ*TEMP1
*         AAPP  = AAPP*TEMP1
      ELSE IF( ( AAQQ.GE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN
         TEMP1 = MAX( SN / AAQQ, TEMP1 / AAPP )
*         AAQQ  = AAQQ*TEMP1
*         AAPP  = AAPP*TEMP1
      ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN
         TEMP1 = MIN( SN / AAQQ, BIG / ( DSQRT( DBLE( N ) )*AAPP ) )
*         AAQQ  = AAQQ*TEMP1
*         AAPP  = AAPP*TEMP1
      ELSE
         TEMP1 = ONE
      END IF
*
*     Scale, if necessary
*
      IF( TEMP1.NE.ONE ) THEN
         CALL DLASCL( 'G', 0, 0, ONE, TEMP1, N, 1, SVA, N, IERR )
      END IF
      SKL= TEMP1*SKL
      IF( SKL.NE.ONE ) THEN
         CALL DLASCL( JOBA, 0, 0, ONE, SKL, M, N, A, LDA, IERR )
         SKL= ONE / SKL
      END IF
*
*     Row-cyclic Jacobi SVD algorithm with column pivoting
*
      EMPTSW = ( N*( N-1 ) ) / 2
      NOTROT = 0
      FASTR( 1 ) = ZERO
*
*     A is represented in factored form A = A * diag(WORK), where diag(WORK)
*     is initialized to identity. WORK is updated during fast scaled
*     rotations.
*
      DO 1868 q = 1, N
         WORK( q ) = ONE
 1868 CONTINUE
*
*
      SWBAND = 3
*[TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective
*     if DGESVJ is used as a computational routine in the preconditioned
*     Jacobi SVD algorithm DGESVJ. For sweeps i=1:SWBAND the procedure
*     works on pivots inside a band-like region around the diagonal.
*     The boundaries are determined dynamically, based on the number of
*     pivots above a threshold.
*
      KBL = MIN( 8, N )
*[TP] KBL is a tuning parameter that defines the tile size in the
*     tiling of the p-q loops of pivot pairs. In general, an optimal
*     value of KBL depends on the matrix dimensions and on the
*     parameters of the computer's memory.
*
      NBL = N / KBL
      IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
*
      BLSKIP = KBL**2
*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
*
      ROWSKIP = MIN( 5, KBL )
*[TP] ROWSKIP is a tuning parameter.
*
      LKAHEAD = 1
*[TP] LKAHEAD is a tuning parameter.
*
*     Quasi block transformations, using the lower (upper) triangular
*     structure of the input matrix. The quasi-block-cycling usually
*     invokes cubic convergence. Big part of this cycle is done inside
*     canonical subspaces of dimensions less than M.
*
      IF( ( LOWER .OR. UPPER ) .AND. ( N.GT.MAX( 64, 4*KBL ) ) ) THEN
*[TP] The number of partition levels and the actual partition are
*     tuning parameters.
         N4 = N / 4
         N2 = N / 2
         N34 = 3*N4
         IF( APPLV ) THEN
            q = 0
         ELSE
            q = 1
         END IF
*
         IF( LOWER ) THEN
*
*     This works very well on lower triangular matrices, in particular
*     in the framework of the preconditioned Jacobi SVD (xGEJSV).
*     The idea is simple:
*     [+ 0 0 0]   Note that Jacobi transformations of [0 0]
*     [+ + 0 0]                                       [0 0]
*     [+ + x 0]   actually work on [x 0]              [x 0]
*     [+ + x x]                    [x x].             [x x]
*
            CALL DGSVJ0( JOBV, M-N34, N-N34, A( N34+1, N34+1 ), LDA,
     $                   WORK( N34+1 ), SVA( N34+1 ), MVL,
     $                   V( N34*q+1, N34+1 ), LDV, EPSLN, SFMIN, TOL,
     $                   2, WORK( N+1 ), LWORK-N, IERR )
*
            CALL DGSVJ0( JOBV, M-N2, N34-N2, A( N2+1, N2+1 ), LDA,
     $                   WORK( N2+1 ), SVA( N2+1 ), MVL,
     $                   V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 2,
     $                   WORK( N+1 ), LWORK-N, IERR )
*
            CALL DGSVJ1( JOBV, M-N2, N-N2, N4, A( N2+1, N2+1 ), LDA,
     $                   WORK( N2+1 ), SVA( N2+1 ), MVL,
     $                   V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 1,
     $                   WORK( N+1 ), LWORK-N, IERR )
*
            CALL DGSVJ0( JOBV, M-N4, N2-N4, A( N4+1, N4+1 ), LDA,
     $                   WORK( N4+1 ), SVA( N4+1 ), MVL,
     $                   V( N4*q+1, N4+1 ), LDV, EPSLN, SFMIN, TOL, 1,
     $                   WORK( N+1 ), LWORK-N, IERR )
*
            CALL DGSVJ0( JOBV, M, N4, A, LDA, WORK, SVA, MVL, V, LDV,
     $                   EPSLN, SFMIN, TOL, 1, WORK( N+1 ), LWORK-N,
     $                   IERR )
*
            CALL DGSVJ1( JOBV, M, N2, N4, A, LDA, WORK, SVA, MVL, V,
     $                   LDV, EPSLN, SFMIN, TOL, 1, WORK( N+1 ),
     $                   LWORK-N, IERR )
*
*
         ELSE IF( UPPER ) THEN
*
*
            CALL DGSVJ0( JOBV, N4, N4, A, LDA, WORK, SVA, MVL, V,
     $                   LDV,
     $                   EPSLN, SFMIN, TOL, 2, WORK( N+1 ), LWORK-N,
     $                   IERR )
*
            CALL DGSVJ0( JOBV, N2, N4, A( 1, N4+1 ), LDA,
     $                   WORK( N4+1 ),
     $                   SVA( N4+1 ), MVL, V( N4*q+1, N4+1 ), LDV,
     $                   EPSLN, SFMIN, TOL, 1, WORK( N+1 ), LWORK-N,
     $                   IERR )
*
            CALL DGSVJ1( JOBV, N2, N2, N4, A, LDA, WORK, SVA, MVL, V,
     $                   LDV, EPSLN, SFMIN, TOL, 1, WORK( N+1 ),
     $                   LWORK-N, IERR )
*
            CALL DGSVJ0( JOBV, N2+N4, N4, A( 1, N2+1 ), LDA,
     $                   WORK( N2+1 ), SVA( N2+1 ), MVL,
     $                   V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 1,
     $                   WORK( N+1 ), LWORK-N, IERR )

         END IF
*
      END IF
*
*     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
*
      DO 1993 i = 1, NSWEEP
*
*     .. go go go ...
*
         MXAAPQ = ZERO
         MXSINJ = ZERO
         ISWROT = 0
*
         NOTROT = 0
         PSKIPPED = 0
*
*     Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
*     1 <= p < q <= N. This is the first step toward a blocked implementation
*     of the rotations. New implementation, based on block transformations,
*     is under development.
*
         DO 2000 ibr = 1, NBL
*
            igl = ( ibr-1 )*KBL + 1
*
            DO 1002 ir1 = 0, MIN( LKAHEAD, NBL-ibr )
*
               igl = igl + ir1*KBL
*
               DO 2001 p = igl, MIN( igl+KBL-1, N-1 )
*
*     .. de Rijk's pivoting
*
                  q = IDAMAX( N-p+1, SVA( p ), 1 ) + p - 1
                  IF( p.NE.q ) THEN
                     CALL DSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
                     IF( RSVEC )CALL DSWAP( MVL, V( 1, p ), 1,
     $                                      V( 1, q ), 1 )
                     TEMP1 = SVA( p )
                     SVA( p ) = SVA( q )
                     SVA( q ) = TEMP1
                     TEMP1 = WORK( p )
                     WORK( p ) = WORK( q )
                     WORK( q ) = TEMP1
                  END IF
*
                  IF( ir1.EQ.0 ) THEN
*
*        Column norms are periodically updated by explicit
*        norm computation.
*        Caveat:
*        Unfortunately, some BLAS implementations compute DNRM2(M,A(1,p),1)
*        as DSQRT(DDOT(M,A(1,p),1,A(1,p),1)), which may cause the result to
*        overflow for ||A(:,p)||_2 > DSQRT(overflow_threshold), and to
*        underflow for ||A(:,p)||_2 < DSQRT(underflow_threshold).
*        Hence, DNRM2 cannot be trusted, not even in the case when
*        the true norm is far from the under(over)flow boundaries.
*        If properly implemented DNRM2 is available, the IF-THEN-ELSE
*        below should read "AAPP = DNRM2( M, A(1,p), 1 ) * WORK(p)".
*
                     IF( ( SVA( p ).LT.ROOTBIG ) .AND.
     $                   ( SVA( p ).GT.ROOTSFMIN ) ) THEN
                        SVA( p ) = DNRM2( M, A( 1, p ), 1 )*WORK( p )
                     ELSE
                        TEMP1 = ZERO
                        AAPP = ONE
                        CALL DLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
                        SVA( p ) = TEMP1*DSQRT( AAPP )*WORK( p )
                     END IF
                     AAPP = SVA( p )
                  ELSE
                     AAPP = SVA( p )
                  END IF
*
                  IF( AAPP.GT.ZERO ) THEN
*
                     PSKIPPED = 0
*
                     DO 2002 q = p + 1, MIN( igl+KBL-1, N )
*
                        AAQQ = SVA( q )
*
                        IF( AAQQ.GT.ZERO ) THEN
*
                           AAPP0 = AAPP
                           IF( AAQQ.GE.ONE ) THEN
                              ROTOK = ( SMALL*AAPP ).LE.AAQQ
                              IF( AAPP.LT.( BIG / AAQQ ) ) THEN
                                 AAPQ = ( DDOT( M, A( 1, p ), 1,
     $                                    A( 1,
     $                                  q ), 1 )*WORK( p )*WORK( q ) /
     $                                  AAQQ ) / AAPP
                              ELSE
                                 CALL DCOPY( M, A( 1, p ), 1,
     $                                       WORK( N+1 ), 1 )
                                 CALL DLASCL( 'G', 0, 0, AAPP,
     $                                        WORK( p ), M, 1,
     $                                        WORK( N+1 ), LDA, IERR )
                                 AAPQ = DDOT( M, WORK( N+1 ), 1,
     $                                  A( 1, q ), 1 )*WORK( q ) / AAQQ
                              END IF
                           ELSE
                              ROTOK = AAPP.LE.( AAQQ / SMALL )
                              IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
                                 AAPQ = ( DDOT( M, A( 1, p ), 1,
     $                                    A( 1,
     $                                  q ), 1 )*WORK( p )*WORK( q ) /
     $                                  AAQQ ) / AAPP
                              ELSE
                                 CALL DCOPY( M, A( 1, q ), 1,
     $                                       WORK( N+1 ), 1 )
                                 CALL DLASCL( 'G', 0, 0, AAQQ,
     $                                        WORK( q ), M, 1,
     $                                        WORK( N+1 ), LDA, IERR )
                                 AAPQ = DDOT( M, WORK( N+1 ), 1,
     $                                  A( 1, p ), 1 )*WORK( p ) / AAPP
                              END IF
                           END IF
*
                           MXAAPQ = MAX( MXAAPQ, DABS( AAPQ ) )
*
*        TO rotate or NOT to rotate, THAT is the question ...
*
                           IF( DABS( AAPQ ).GT.TOL ) THEN
*
*           .. rotate
*[RTD]      ROTATED = ROTATED + ONE
*
                              IF( ir1.EQ.0 ) THEN
                                 NOTROT = 0
                                 PSKIPPED = 0
                                 ISWROT = ISWROT + 1
                              END IF
*
                              IF( ROTOK ) THEN
*
                                 AQOAP = AAQQ / AAPP
                                 APOAQ = AAPP / AAQQ
                                 THETA = -HALF*DABS(AQOAP-APOAQ)/AAPQ
*
                                 IF( DABS( THETA ).GT.BIGTHETA ) THEN
*
                                    T = HALF / THETA
                                    FASTR( 3 ) = T*WORK( p ) / WORK( q )
                                    FASTR( 4 ) = -T*WORK( q ) /
     $                                           WORK( p )
                                    CALL DROTM( M, A( 1, p ), 1,
     $                                          A( 1, q ), 1, FASTR )
                                    IF( RSVEC )CALL DROTM( MVL,
     $                                              V( 1, p ), 1,
     $                                              V( 1, q ), 1,
     $                                              FASTR )
                                    SVA( q ) = AAQQ*DSQRT( MAX( ZERO,
     $                                         ONE+T*APOAQ*AAPQ ) )
                                    AAPP = AAPP*DSQRT( MAX( ZERO,
     $                                     ONE-T*AQOAP*AAPQ ) )
                                    MXSINJ = MAX( MXSINJ, DABS( T ) )
*
                                 ELSE
*
*                 .. choose correct signum for THETA and rotate
*
                                    THSIGN = -DSIGN( ONE, AAPQ )
                                    T = ONE / ( THETA+THSIGN*
     $                                  DSQRT( ONE+THETA*THETA ) )
                                    CS = DSQRT( ONE / ( ONE+T*T ) )
                                    SN = T*CS
*
                                    MXSINJ = MAX( MXSINJ, DABS( SN ) )
                                    SVA( q ) = AAQQ*DSQRT( MAX( ZERO,
     $                                         ONE+T*APOAQ*AAPQ ) )
                                    AAPP = AAPP*DSQRT( MAX( ZERO,
     $                                     ONE-T*AQOAP*AAPQ ) )
*
                                    APOAQ = WORK( p ) / WORK( q )
                                    AQOAP = WORK( q ) / WORK( p )
                                    IF( WORK( p ).GE.ONE ) THEN
                                       IF( WORK( q ).GE.ONE ) THEN
                                          FASTR( 3 ) = T*APOAQ
                                          FASTR( 4 ) = -T*AQOAP
                                          WORK( p ) = WORK( p )*CS
                                          WORK( q ) = WORK( q )*CS
                                          CALL DROTM( M, A( 1, p ),
     $                                                1,
     $                                                A( 1, q ), 1,
     $                                                FASTR )
                                          IF( RSVEC )CALL DROTM( MVL,
     $                                        V( 1, p ), 1, V( 1, q ),
     $                                        1, FASTR )
                                       ELSE
                                          CALL DAXPY( M, -T*AQOAP,
     $                                                A( 1, q ), 1,
     $                                                A( 1, p ), 1 )
                                          CALL DAXPY( M, CS*SN*APOAQ,
     $                                                A( 1, p ), 1,
     $                                                A( 1, q ), 1 )
                                          WORK( p ) = WORK( p )*CS
                                          WORK( q ) = WORK( q ) / CS
                                          IF( RSVEC ) THEN
                                             CALL DAXPY( MVL,
     $                                                   -T*AQOAP,
     $                                                   V( 1, q ), 1,
     $                                                   V( 1, p ), 1 )
                                             CALL DAXPY( MVL,
     $                                                   CS*SN*APOAQ,
     $                                                   V( 1, p ), 1,
     $                                                   V( 1, q ), 1 )
                                          END IF
                                       END IF
                                    ELSE
                                       IF( WORK( q ).GE.ONE ) THEN
                                          CALL DAXPY( M, T*APOAQ,
     $                                                A( 1, p ), 1,
     $                                                A( 1, q ), 1 )
                                          CALL DAXPY( M,
     $                                                -CS*SN*AQOAP,
     $                                                A( 1, q ), 1,
     $                                                A( 1, p ), 1 )
                                          WORK( p ) = WORK( p ) / CS
                                          WORK( q ) = WORK( q )*CS
                                          IF( RSVEC ) THEN
                                             CALL DAXPY( MVL,
     $                                                   T*APOAQ,
     $                                                   V( 1, p ), 1,
     $                                                   V( 1, q ), 1 )
                                             CALL DAXPY( MVL,
     $                                                   -CS*SN*AQOAP,
     $                                                   V( 1, q ), 1,
     $                                                   V( 1, p ), 1 )
                                          END IF
                                       ELSE
                                          IF( WORK( p ).GE.WORK( q ) )
     $                                        THEN
                                             CALL DAXPY( M, -T*AQOAP,
     $                                                   A( 1, q ), 1,
     $                                                   A( 1, p ), 1 )
                                             CALL DAXPY( M,
     $                                                   CS*SN*APOAQ,
     $                                                   A( 1, p ), 1,
     $                                                   A( 1, q ), 1 )
                                             WORK( p ) = WORK( p )*CS
                                             WORK( q ) = WORK( q ) / CS
                                             IF( RSVEC ) THEN
                                                CALL DAXPY( MVL,
     $                                               -T*AQOAP,
     $                                               V( 1, q ), 1,
     $                                               V( 1, p ), 1 )
                                                CALL DAXPY( MVL,
     $                                               CS*SN*APOAQ,
     $                                               V( 1, p ), 1,
     $                                               V( 1, q ), 1 )
                                             END IF
                                          ELSE
                                             CALL DAXPY( M, T*APOAQ,
     $                                                   A( 1, p ), 1,
     $                                                   A( 1, q ), 1 )
                                             CALL DAXPY( M,
     $                                                   -CS*SN*AQOAP,
     $                                                   A( 1, q ), 1,
     $                                                   A( 1, p ), 1 )
                                             WORK( p ) = WORK( p ) / CS
                                             WORK( q ) = WORK( q )*CS
                                             IF( RSVEC ) THEN
                                                CALL DAXPY( MVL,
     $                                               T*APOAQ, V( 1, p ),
     $                                               1, V( 1, q ), 1 )
                                                CALL DAXPY( MVL,
     $                                               -CS*SN*AQOAP,
     $                                               V( 1, q ), 1,
     $                                               V( 1, p ), 1 )
                                             END IF
                                          END IF
                                       END IF
                                    END IF
                                 END IF
*
                              ELSE
*              .. have to use modified Gram-Schmidt like transformation
                                 CALL DCOPY( M, A( 1, p ), 1,
     $                                       WORK( N+1 ), 1 )
                                 CALL DLASCL( 'G', 0, 0, AAPP, ONE,
     $                                        M,
     $                                        1, WORK( N+1 ), LDA,
     $                                        IERR )
                                 CALL DLASCL( 'G', 0, 0, AAQQ, ONE,
     $                                        M,
     $                                        1, A( 1, q ), LDA, IERR )
                                 TEMP1 = -AAPQ*WORK( p ) / WORK( q )
                                 CALL DAXPY( M, TEMP1, WORK( N+1 ),
     $                                       1,
     $                                       A( 1, q ), 1 )
                                 CALL DLASCL( 'G', 0, 0, ONE, AAQQ,
     $                                        M,
     $                                        1, A( 1, q ), LDA, IERR )
                                 SVA( q ) = AAQQ*DSQRT( MAX( ZERO,
     $                                      ONE-AAPQ*AAPQ ) )
                                 MXSINJ = MAX( MXSINJ, SFMIN )
                              END IF
*           END IF ROTOK THEN ... ELSE
*
*           In the case of cancellation in updating SVA(q), SVA(p)
*           recompute SVA(q), SVA(p).
*
                              IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
     $                            THEN
                                 IF( ( AAQQ.LT.ROOTBIG ) .AND.
     $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
                                    SVA( q ) = DNRM2( M, A( 1, q ),
     $                                   1 )*
     $                                         WORK( q )
                                 ELSE
                                    T = ZERO
                                    AAQQ = ONE
                                    CALL DLASSQ( M, A( 1, q ), 1, T,
     $                                           AAQQ )
                                    SVA( q ) = T*DSQRT( AAQQ )*WORK( q )
                                 END IF
                              END IF
                              IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
                                 IF( ( AAPP.LT.ROOTBIG ) .AND.
     $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
                                    AAPP = DNRM2( M, A( 1, p ), 1 )*
     $                                     WORK( p )
                                 ELSE
                                    T = ZERO
                                    AAPP = ONE
                                    CALL DLASSQ( M, A( 1, p ), 1, T,
     $                                           AAPP )
                                    AAPP = T*DSQRT( AAPP )*WORK( p )
                                 END IF
                                 SVA( p ) = AAPP
                              END IF
*
                           ELSE
*        A(:,p) and A(:,q) already numerically orthogonal
                              IF( ir1.EQ.0 )NOTROT = NOTROT + 1
*[RTD]      SKIPPED  = SKIPPED  + 1
                              PSKIPPED = PSKIPPED + 1
                           END IF
                        ELSE
*        A(:,q) is zero column
                           IF( ir1.EQ.0 )NOTROT = NOTROT + 1
                           PSKIPPED = PSKIPPED + 1
                        END IF
*
                        IF( ( i.LE.SWBAND ) .AND.
     $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
                           IF( ir1.EQ.0 )AAPP = -AAPP
                           NOTROT = 0
                           GO TO 2103
                        END IF
*
 2002                CONTINUE
*     END q-LOOP
*
 2103                CONTINUE
*     bailed out of q-loop
*
                     SVA( p ) = AAPP
*
                  ELSE
                     SVA( p ) = AAPP
                     IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
     $                   NOTROT = NOTROT + MIN( igl+KBL-1, N ) - p
                  END IF
*
 2001          CONTINUE
*     end of the p-loop
*     end of doing the block ( ibr, ibr )
 1002       CONTINUE
*     end of ir1-loop
*
* ... go to the off diagonal blocks
*
            igl = ( ibr-1 )*KBL + 1
*
            DO 2010 jbc = ibr + 1, NBL
*
               jgl = ( jbc-1 )*KBL + 1
*
*        doing the block at ( ibr, jbc )
*
               IJBLSK = 0
               DO 2100 p = igl, MIN( igl+KBL-1, N )
*
                  AAPP = SVA( p )
                  IF( AAPP.GT.ZERO ) THEN
*
                     PSKIPPED = 0
*
                     DO 2200 q = jgl, MIN( jgl+KBL-1, N )
*
                        AAQQ = SVA( q )
                        IF( AAQQ.GT.ZERO ) THEN
                           AAPP0 = AAPP
*
*     .. M x 2 Jacobi SVD ..
*
*        Safe Gram matrix computation
*
                           IF( AAQQ.GE.ONE ) THEN
                              IF( AAPP.GE.AAQQ ) THEN
                                 ROTOK = ( SMALL*AAPP ).LE.AAQQ
                              ELSE
                                 ROTOK = ( SMALL*AAQQ ).LE.AAPP
                              END IF
                              IF( AAPP.LT.( BIG / AAQQ ) ) THEN
                                 AAPQ = ( DDOT( M, A( 1, p ), 1,
     $                                    A( 1,
     $                                  q ), 1 )*WORK( p )*WORK( q ) /
     $                                  AAQQ ) / AAPP
                              ELSE
                                 CALL DCOPY( M, A( 1, p ), 1,
     $                                       WORK( N+1 ), 1 )
                                 CALL DLASCL( 'G', 0, 0, AAPP,
     $                                        WORK( p ), M, 1,
     $                                        WORK( N+1 ), LDA, IERR )
                                 AAPQ = DDOT( M, WORK( N+1 ), 1,
     $                                  A( 1, q ), 1 )*WORK( q ) / AAQQ
                              END IF
                           ELSE
                              IF( AAPP.GE.AAQQ ) THEN
                                 ROTOK = AAPP.LE.( AAQQ / SMALL )
                              ELSE
                                 ROTOK = AAQQ.LE.( AAPP / SMALL )
                              END IF
                              IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
                                 AAPQ = ( DDOT( M, A( 1, p ), 1,
     $                                    A( 1,
     $                                  q ), 1 )*WORK( p )*WORK( q ) /
     $                                  AAQQ ) / AAPP
                              ELSE
                                 CALL DCOPY( M, A( 1, q ), 1,
     $                                       WORK( N+1 ), 1 )
                                 CALL DLASCL( 'G', 0, 0, AAQQ,
     $                                        WORK( q ), M, 1,
     $                                        WORK( N+1 ), LDA, IERR )
                                 AAPQ = DDOT( M, WORK( N+1 ), 1,
     $                                  A( 1, p ), 1 )*WORK( p ) / AAPP
                              END IF
                           END IF
*
                           MXAAPQ = MAX( MXAAPQ, DABS( AAPQ ) )
*
*        TO rotate or NOT to rotate, THAT is the question ...
*
                           IF( DABS( AAPQ ).GT.TOL ) THEN
                              NOTROT = 0
*[RTD]      ROTATED  = ROTATED + 1
                              PSKIPPED = 0
                              ISWROT = ISWROT + 1
*
                              IF( ROTOK ) THEN
*
                                 AQOAP = AAQQ / AAPP
                                 APOAQ = AAPP / AAQQ
                                 THETA = -HALF*DABS(AQOAP-APOAQ)/AAPQ
                                 IF( AAQQ.GT.AAPP0 )THETA = -THETA
*
                                 IF( DABS( THETA ).GT.BIGTHETA ) THEN
                                    T = HALF / THETA
                                    FASTR( 3 ) = T*WORK( p ) / WORK( q )
                                    FASTR( 4 ) = -T*WORK( q ) /
     $                                           WORK( p )
                                    CALL DROTM( M, A( 1, p ), 1,
     $                                          A( 1, q ), 1, FASTR )
                                    IF( RSVEC )CALL DROTM( MVL,
     $                                              V( 1, p ), 1,
     $                                              V( 1, q ), 1,
     $                                              FASTR )
                                    SVA( q ) = AAQQ*DSQRT( MAX( ZERO,
     $                                         ONE+T*APOAQ*AAPQ ) )
                                    AAPP = AAPP*DSQRT( MAX( ZERO,
     $                                     ONE-T*AQOAP*AAPQ ) )
                                    MXSINJ = MAX( MXSINJ, DABS( T ) )
                                 ELSE
*
*                 .. choose correct signum for THETA and rotate
*
                                    THSIGN = -DSIGN( ONE, AAPQ )
                                    IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
                                    T = ONE / ( THETA+THSIGN*
     $                                  DSQRT( ONE+THETA*THETA ) )
                                    CS = DSQRT( ONE / ( ONE+T*T ) )
                                    SN = T*CS
                                    MXSINJ = MAX( MXSINJ, DABS( SN ) )
                                    SVA( q ) = AAQQ*DSQRT( MAX( ZERO,
     $                                         ONE+T*APOAQ*AAPQ ) )
                                    AAPP = AAPP*DSQRT( MAX( ZERO,
     $                                     ONE-T*AQOAP*AAPQ ) )
*
                                    APOAQ = WORK( p ) / WORK( q )
                                    AQOAP = WORK( q ) / WORK( p )
                                    IF( WORK( p ).GE.ONE ) THEN
*
                                       IF( WORK( q ).GE.ONE ) THEN
                                          FASTR( 3 ) = T*APOAQ
                                          FASTR( 4 ) = -T*AQOAP
                                          WORK( p ) = WORK( p )*CS
                                          WORK( q ) = WORK( q )*CS
                                          CALL DROTM( M, A( 1, p ),
     $                                                1,
     $                                                A( 1, q ), 1,
     $                                                FASTR )
                                          IF( RSVEC )CALL DROTM( MVL,
     $                                        V( 1, p ), 1, V( 1, q ),
     $                                        1, FASTR )
                                       ELSE
                                          CALL DAXPY( M, -T*AQOAP,
     $                                                A( 1, q ), 1,
     $                                                A( 1, p ), 1 )
                                          CALL DAXPY( M, CS*SN*APOAQ,
     $                                                A( 1, p ), 1,
     $                                                A( 1, q ), 1 )
                                          IF( RSVEC ) THEN
                                             CALL DAXPY( MVL,
     $                                                   -T*AQOAP,
     $                                                   V( 1, q ), 1,
     $                                                   V( 1, p ), 1 )
                                             CALL DAXPY( MVL,
     $                                                   CS*SN*APOAQ,
     $                                                   V( 1, p ), 1,
     $                                                   V( 1, q ), 1 )
                                          END IF
                                          WORK( p ) = WORK( p )*CS
                                          WORK( q ) = WORK( q ) / CS
                                       END IF
                                    ELSE
                                       IF( WORK( q ).GE.ONE ) THEN
                                          CALL DAXPY( M, T*APOAQ,
     $                                                A( 1, p ), 1,
     $                                                A( 1, q ), 1 )
                                          CALL DAXPY( M,
     $                                                -CS*SN*AQOAP,
     $                                                A( 1, q ), 1,
     $                                                A( 1, p ), 1 )
                                          IF( RSVEC ) THEN
                                             CALL DAXPY( MVL,
     $                                                   T*APOAQ,
     $                                                   V( 1, p ), 1,
     $                                                   V( 1, q ), 1 )
                                             CALL DAXPY( MVL,
     $                                                   -CS*SN*AQOAP,
     $                                                   V( 1, q ), 1,
     $                                                   V( 1, p ), 1 )
                                          END IF
                                          WORK( p ) = WORK( p ) / CS
                                          WORK( q ) = WORK( q )*CS
                                       ELSE
                                          IF( WORK( p ).GE.WORK( q ) )
     $                                        THEN
                                             CALL DAXPY( M, -T*AQOAP,
     $                                                   A( 1, q ), 1,
     $                                                   A( 1, p ), 1 )
                                             CALL DAXPY( M,
     $                                                   CS*SN*APOAQ,
     $                                                   A( 1, p ), 1,
     $                                                   A( 1, q ), 1 )
                                             WORK( p ) = WORK( p )*CS
                                             WORK( q ) = WORK( q ) / CS
                                             IF( RSVEC ) THEN
                                                CALL DAXPY( MVL,
     $                                               -T*AQOAP,
     $                                               V( 1, q ), 1,
     $                                               V( 1, p ), 1 )
                                                CALL DAXPY( MVL,
     $                                               CS*SN*APOAQ,
     $                                               V( 1, p ), 1,
     $                                               V( 1, q ), 1 )
                                             END IF
                                          ELSE
                                             CALL DAXPY( M, T*APOAQ,
     $                                                   A( 1, p ), 1,
     $                                                   A( 1, q ), 1 )
                                             CALL DAXPY( M,
     $                                                   -CS*SN*AQOAP,
     $                                                   A( 1, q ), 1,
     $                                                   A( 1, p ), 1 )
                                             WORK( p ) = WORK( p ) / CS
                                             WORK( q ) = WORK( q )*CS
                                             IF( RSVEC ) THEN
                                                CALL DAXPY( MVL,
     $                                               T*APOAQ, V( 1, p ),
     $                                               1, V( 1, q ), 1 )
                                                CALL DAXPY( MVL,
     $                                               -CS*SN*AQOAP,
     $                                               V( 1, q ), 1,
     $                                               V( 1, p ), 1 )
                                             END IF
                                          END IF
                                       END IF
                                    END IF
                                 END IF
*
                              ELSE
                                 IF( AAPP.GT.AAQQ ) THEN
                                    CALL DCOPY( M, A( 1, p ), 1,
     $                                          WORK( N+1 ), 1 )
                                    CALL DLASCL( 'G', 0, 0, AAPP,
     $                                           ONE,
     $                                           M, 1, WORK( N+1 ), LDA,
     $                                           IERR )
                                    CALL DLASCL( 'G', 0, 0, AAQQ,
     $                                           ONE,
     $                                           M, 1, A( 1, q ), LDA,
     $                                           IERR )
                                    TEMP1 = -AAPQ*WORK( p ) / WORK( q )
                                    CALL DAXPY( M, TEMP1,
     $                                          WORK( N+1 ),
     $                                          1, A( 1, q ), 1 )
                                    CALL DLASCL( 'G', 0, 0, ONE,
     $                                           AAQQ,
     $                                           M, 1, A( 1, q ), LDA,
     $                                           IERR )
                                    SVA( q ) = AAQQ*DSQRT( MAX( ZERO,
     $                                         ONE-AAPQ*AAPQ ) )
                                    MXSINJ = MAX( MXSINJ, SFMIN )
                                 ELSE
                                    CALL DCOPY( M, A( 1, q ), 1,
     $                                          WORK( N+1 ), 1 )
                                    CALL DLASCL( 'G', 0, 0, AAQQ,
     $                                           ONE,
     $                                           M, 1, WORK( N+1 ), LDA,
     $                                           IERR )
                                    CALL DLASCL( 'G', 0, 0, AAPP,
     $                                           ONE,
     $                                           M, 1, A( 1, p ), LDA,
     $                                           IERR )
                                    TEMP1 = -AAPQ*WORK( q ) / WORK( p )
                                    CALL DAXPY( M, TEMP1,
     $                                          WORK( N+1 ),
     $                                          1, A( 1, p ), 1 )
                                    CALL DLASCL( 'G', 0, 0, ONE,
     $                                           AAPP,
     $                                           M, 1, A( 1, p ), LDA,
     $                                           IERR )
                                    SVA( p ) = AAPP*DSQRT( MAX( ZERO,
     $                                         ONE-AAPQ*AAPQ ) )
                                    MXSINJ = MAX( MXSINJ, SFMIN )
                                 END IF
                              END IF
*           END IF ROTOK THEN ... ELSE
*
*           In the case of cancellation in updating SVA(q)
*           .. recompute SVA(q)
                              IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
     $                            THEN
                                 IF( ( AAQQ.LT.ROOTBIG ) .AND.
     $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
                                    SVA( q ) = DNRM2( M, A( 1, q ),
     $                                   1 )*
     $                                         WORK( q )
                                 ELSE
                                    T = ZERO
                                    AAQQ = ONE
                                    CALL DLASSQ( M, A( 1, q ), 1, T,
     $                                           AAQQ )
                                    SVA( q ) = T*DSQRT( AAQQ )*WORK( q )
                                 END IF
                              END IF
                              IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
                                 IF( ( AAPP.LT.ROOTBIG ) .AND.
     $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
                                    AAPP = DNRM2( M, A( 1, p ), 1 )*
     $                                     WORK( p )
                                 ELSE
                                    T = ZERO
                                    AAPP = ONE
                                    CALL DLASSQ( M, A( 1, p ), 1, T,
     $                                           AAPP )
                                    AAPP = T*DSQRT( AAPP )*WORK( p )
                                 END IF
                                 SVA( p ) = AAPP
                              END IF
*              end of OK rotation
                           ELSE
                              NOTROT = NOTROT + 1
*[RTD]      SKIPPED  = SKIPPED  + 1
                              PSKIPPED = PSKIPPED + 1
                              IJBLSK = IJBLSK + 1
                           END IF
                        ELSE
                           NOTROT = NOTROT + 1
                           PSKIPPED = PSKIPPED + 1
                           IJBLSK = IJBLSK + 1
                        END IF
*
                        IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
     $                      THEN
                           SVA( p ) = AAPP
                           NOTROT = 0
                           GO TO 2011
                        END IF
                        IF( ( i.LE.SWBAND ) .AND.
     $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
                           AAPP = -AAPP
                           NOTROT = 0
                           GO TO 2203
                        END IF
*
 2200                CONTINUE
*        end of the q-loop
 2203                CONTINUE
*
                     SVA( p ) = AAPP
*
                  ELSE
*
                     IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
     $                   MIN( jgl+KBL-1, N ) - jgl + 1
                     IF( AAPP.LT.ZERO )NOTROT = 0
*
                  END IF
*
 2100          CONTINUE
*     end of the p-loop
 2010       CONTINUE
*     end of the jbc-loop
 2011       CONTINUE
*2011 bailed out of the jbc-loop
            DO 2012 p = igl, MIN( igl+KBL-1, N )
               SVA( p ) = DABS( SVA( p ) )
 2012       CONTINUE
***
 2000    CONTINUE
*2000 :: end of the ibr-loop
*
*     .. update SVA(N)
         IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
     $       THEN
            SVA( N ) = DNRM2( M, A( 1, N ), 1 )*WORK( N )
         ELSE
            T = ZERO
            AAPP = ONE
            CALL DLASSQ( M, A( 1, N ), 1, T, AAPP )
            SVA( N ) = T*DSQRT( AAPP )*WORK( N )
         END IF
*
*     Additional steering devices
*
         IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
     $       ( ISWROT.LE.N ) ) )SWBAND = i
*
         IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.DSQRT( DBLE( N ) )*
     $       TOL ) .AND. ( DBLE( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
            GO TO 1994
         END IF
*
         IF( NOTROT.GE.EMPTSW )GO TO 1994
*
 1993 CONTINUE
*     end i=1:NSWEEP loop
*
* #:( Reaching this point means that the procedure has not converged.
      INFO = NSWEEP - 1
      GO TO 1995
*
 1994 CONTINUE
* #:) Reaching this point means numerical convergence after the i-th
*     sweep.
*
      INFO = 0
* #:) INFO = 0 confirms successful iterations.
 1995 CONTINUE
*
*     Sort the singular values and find how many are above
*     the underflow threshold.
*
      N2 = 0
      N4 = 0
      DO 5991 p = 1, N - 1
         q = IDAMAX( N-p+1, SVA( p ), 1 ) + p - 1
         IF( p.NE.q ) THEN
            TEMP1 = SVA( p )
            SVA( p ) = SVA( q )
            SVA( q ) = TEMP1
            TEMP1 = WORK( p )
            WORK( p ) = WORK( q )
            WORK( q ) = TEMP1
            CALL DSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
            IF( RSVEC )CALL DSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
         END IF
         IF( SVA( p ).NE.ZERO ) THEN
            N4 = N4 + 1
            IF( SVA( p )*SKL.GT.SFMIN )N2 = N2 + 1
         END IF
 5991 CONTINUE
      IF( SVA( N ).NE.ZERO ) THEN
         N4 = N4 + 1
         IF( SVA( N )*SKL.GT.SFMIN )N2 = N2 + 1
      END IF
*
*     Normalize the left singular vectors.
*
      IF( LSVEC .OR. UCTOL ) THEN
         DO 1998 p = 1, N2
            CALL DSCAL( M, WORK( p ) / SVA( p ), A( 1, p ), 1 )
 1998    CONTINUE
      END IF
*
*     Scale the product of Jacobi rotations (assemble the fast rotations).
*
      IF( RSVEC ) THEN
         IF( APPLV ) THEN
            DO 2398 p = 1, N
               CALL DSCAL( MVL, WORK( p ), V( 1, p ), 1 )
 2398       CONTINUE
         ELSE
            DO 2399 p = 1, N
               TEMP1 = ONE / DNRM2( MVL, V( 1, p ), 1 )
               CALL DSCAL( MVL, TEMP1, V( 1, p ), 1 )
 2399       CONTINUE
         END IF
      END IF
*
*     Undo scaling, if necessary (and possible).
      IF( ( ( SKL.GT.ONE ) .AND. ( SVA( 1 ).LT.( BIG / SKL) ) )
     $    .OR. ( ( SKL.LT.ONE ) .AND. ( SVA( MAX( N2, 1 ) ) .GT.
     $    ( SFMIN / SKL) ) ) ) THEN
         DO 2400 p = 1, N
            SVA( P ) = SKL*SVA( P )
 2400    CONTINUE
         SKL= ONE
      END IF
*
      WORK( 1 ) = SKL
*     The singular values of A are SKL*SVA(1:N). If SKL.NE.ONE
*     then some of the singular values may overflow or underflow and
*     the spectrum is given in this factored representation.
*
      WORK( 2 ) = DBLE( N4 )
*     N4 is the number of computed nonzero singular values of A.
*
      WORK( 3 ) = DBLE( N2 )
*     N2 is the number of singular values of A greater than SFMIN.
*     If N2<N, SVA(N2:N) contains ZEROS and/or denormalized numbers
*     that may carry some information.
*
      WORK( 4 ) = DBLE( i )
*     i is the index of the last sweep before declaring convergence.
*
      WORK( 5 ) = MXAAPQ
*     MXAAPQ is the largest absolute value of scaled pivots in the
*     last sweep
*
      WORK( 6 ) = MXSINJ
*     MXSINJ is the largest absolute value of the sines of Jacobi angles
*     in the last sweep
*
      RETURN
*     ..
*     .. END OF DGESVJ
*     ..
      END