numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dggsvp3.f | 16062B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
*> \brief \b DGGSVP3 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DGGSVP3 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggsvp3.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggsvp3.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggsvp3.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, * TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, * IWORK, TAU, WORK, LWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER JOBQ, JOBU, JOBV * INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK * DOUBLE PRECISION TOLA, TOLB * .. * .. Array Arguments .. * INTEGER IWORK( * ) * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), * $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DGGSVP3 computes orthogonal matrices U, V and Q such that *> *> N-K-L K L *> U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; *> L ( 0 0 A23 ) *> M-K-L ( 0 0 0 ) *> *> N-K-L K L *> = K ( 0 A12 A13 ) if M-K-L < 0; *> M-K ( 0 0 A23 ) *> *> N-K-L K L *> V**T*B*Q = L ( 0 0 B13 ) *> P-L ( 0 0 0 ) *> *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, *> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective *> numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T. *> *> This decomposition is the preprocessing step for computing the *> Generalized Singular Value Decomposition (GSVD), see subroutine *> DGGSVD3. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBU *> \verbatim *> JOBU is CHARACTER*1 *> = 'U': Orthogonal matrix U is computed; *> = 'N': U is not computed. *> \endverbatim *> *> \param[in] JOBV *> \verbatim *> JOBV is CHARACTER*1 *> = 'V': Orthogonal matrix V is computed; *> = 'N': V is not computed. *> \endverbatim *> *> \param[in] JOBQ *> \verbatim *> JOBQ is CHARACTER*1 *> = 'Q': Orthogonal matrix Q is computed; *> = 'N': Q is not computed. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] P *> \verbatim *> P is INTEGER *> The number of rows of the matrix B. P >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrices A and B. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> On entry, the M-by-N matrix A. *> On exit, A contains the triangular (or trapezoidal) matrix *> described in the Purpose section. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is DOUBLE PRECISION array, dimension (LDB,N) *> On entry, the P-by-N matrix B. *> On exit, B contains the triangular matrix described in *> the Purpose section. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,P). *> \endverbatim *> *> \param[in] TOLA *> \verbatim *> TOLA is DOUBLE PRECISION *> \endverbatim *> *> \param[in] TOLB *> \verbatim *> TOLB is DOUBLE PRECISION *> *> TOLA and TOLB are the thresholds to determine the effective *> numerical rank of matrix B and a subblock of A. Generally, *> they are set to *> TOLA = MAX(M,N)*norm(A)*MACHEPS, *> TOLB = MAX(P,N)*norm(B)*MACHEPS. *> The size of TOLA and TOLB may affect the size of backward *> errors of the decomposition. *> \endverbatim *> *> \param[out] K *> \verbatim *> K is INTEGER *> \endverbatim *> *> \param[out] L *> \verbatim *> L is INTEGER *> *> On exit, K and L specify the dimension of the subblocks *> described in Purpose section. *> K + L = effective numerical rank of (A**T,B**T)**T. *> \endverbatim *> *> \param[out] U *> \verbatim *> U is DOUBLE PRECISION array, dimension (LDU,M) *> If JOBU = 'U', U contains the orthogonal matrix U. *> If JOBU = 'N', U is not referenced. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of the array U. LDU >= max(1,M) if *> JOBU = 'U'; LDU >= 1 otherwise. *> \endverbatim *> *> \param[out] V *> \verbatim *> V is DOUBLE PRECISION array, dimension (LDV,P) *> If JOBV = 'V', V contains the orthogonal matrix V. *> If JOBV = 'N', V is not referenced. *> \endverbatim *> *> \param[in] LDV *> \verbatim *> LDV is INTEGER *> The leading dimension of the array V. LDV >= max(1,P) if *> JOBV = 'V'; LDV >= 1 otherwise. *> \endverbatim *> *> \param[out] Q *> \verbatim *> Q is DOUBLE PRECISION array, dimension (LDQ,N) *> If JOBQ = 'Q', Q contains the orthogonal matrix Q. *> If JOBQ = 'N', Q is not referenced. *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. LDQ >= max(1,N) if *> JOBQ = 'Q'; LDQ >= 1 otherwise. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (N) *> \endverbatim *> *> \param[out] TAU *> \verbatim *> TAU is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= 1. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup ggsvp3 * *> \par Further Details: * ===================== *> *> \verbatim *> *> The subroutine uses LAPACK subroutine DGEQP3 for the QR factorization *> with column pivoting to detect the effective numerical rank of the *> a matrix. It may be replaced by a better rank determination strategy. *> *> DGGSVP3 replaces the deprecated subroutine DGGSVP. *> *> \endverbatim *> * ===================================================================== SUBROUTINE DGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, $ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, $ IWORK, TAU, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * IMPLICIT NONE * * .. Scalar Arguments .. CHARACTER JOBQ, JOBU, JOBV INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, $ LWORK DOUBLE PRECISION TOLA, TOLB * .. * .. Array Arguments .. INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. LOGICAL FORWRD, WANTQ, WANTU, WANTV, LQUERY INTEGER I, J, LWKOPT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL DGEQP3, DGEQR2, DGERQ2, DLACPY, $ DLAPMT, $ DLASET, DORG2R, DORM2R, DORMR2, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters * WANTU = LSAME( JOBU, 'U' ) WANTV = LSAME( JOBV, 'V' ) WANTQ = LSAME( JOBQ, 'Q' ) FORWRD = .TRUE. LQUERY = ( LWORK.EQ.-1 ) LWKOPT = 1 * * Test the input arguments * INFO = 0 IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN INFO = -2 ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN INFO = -3 ELSE IF( M.LT.0 ) THEN INFO = -4 ELSE IF( P.LT.0 ) THEN INFO = -5 ELSE IF( N.LT.0 ) THEN INFO = -6 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -8 ELSE IF( LDB.LT.MAX( 1, P ) ) THEN INFO = -10 ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN INFO = -16 ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN INFO = -18 ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN INFO = -20 ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN INFO = -24 END IF * * Compute workspace * IF( INFO.EQ.0 ) THEN CALL DGEQP3( P, N, B, LDB, IWORK, TAU, WORK, -1, INFO ) LWKOPT = INT( WORK ( 1 ) ) IF( WANTV ) THEN LWKOPT = MAX( LWKOPT, P ) END IF LWKOPT = MAX( LWKOPT, MIN( N, P ) ) LWKOPT = MAX( LWKOPT, M ) IF( WANTQ ) THEN LWKOPT = MAX( LWKOPT, N ) END IF CALL DGEQP3( M, N, A, LDA, IWORK, TAU, WORK, -1, INFO ) LWKOPT = MAX( LWKOPT, INT( WORK ( 1 ) ) ) LWKOPT = MAX( 1, LWKOPT ) WORK( 1 ) = DBLE( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DGGSVP3', -INFO ) RETURN END IF IF( LQUERY ) THEN RETURN ENDIF * * QR with column pivoting of B: B*P = V*( S11 S12 ) * ( 0 0 ) * DO 10 I = 1, N IWORK( I ) = 0 10 CONTINUE CALL DGEQP3( P, N, B, LDB, IWORK, TAU, WORK, LWORK, INFO ) * * Update A := A*P * CALL DLAPMT( FORWRD, M, N, A, LDA, IWORK ) * * Determine the effective rank of matrix B. * L = 0 DO 20 I = 1, MIN( P, N ) IF( ABS( B( I, I ) ).GT.TOLB ) $ L = L + 1 20 CONTINUE * IF( WANTV ) THEN * * Copy the details of V, and form V. * CALL DLASET( 'Full', P, P, ZERO, ZERO, V, LDV ) IF( P.GT.1 ) $ CALL DLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ), $ LDV ) CALL DORG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO ) END IF * * Clean up B * DO 40 J = 1, L - 1 DO 30 I = J + 1, L B( I, J ) = ZERO 30 CONTINUE 40 CONTINUE IF( P.GT.L ) $ CALL DLASET( 'Full', P-L, N, ZERO, ZERO, B( L+1, 1 ), LDB ) * IF( WANTQ ) THEN * * Set Q = I and Update Q := Q*P * CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ ) CALL DLAPMT( FORWRD, N, N, Q, LDQ, IWORK ) END IF * IF( P.GE.L .AND. N.NE.L ) THEN * * RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z * CALL DGERQ2( L, N, B, LDB, TAU, WORK, INFO ) * * Update A := A*Z**T * CALL DORMR2( 'Right', 'Transpose', M, N, L, B, LDB, TAU, A, $ LDA, WORK, INFO ) * IF( WANTQ ) THEN * * Update Q := Q*Z**T * CALL DORMR2( 'Right', 'Transpose', N, N, L, B, LDB, TAU, $ Q, $ LDQ, WORK, INFO ) END IF * * Clean up B * CALL DLASET( 'Full', L, N-L, ZERO, ZERO, B, LDB ) DO 60 J = N - L + 1, N DO 50 I = J - N + L + 1, L B( I, J ) = ZERO 50 CONTINUE 60 CONTINUE * END IF * * Let N-L L * A = ( A11 A12 ) M, * * then the following does the complete QR decomposition of A11: * * A11 = U*( 0 T12 )*P1**T * ( 0 0 ) * DO 70 I = 1, N - L IWORK( I ) = 0 70 CONTINUE CALL DGEQP3( M, N-L, A, LDA, IWORK, TAU, WORK, LWORK, INFO ) * * Determine the effective rank of A11 * K = 0 DO 80 I = 1, MIN( M, N-L ) IF( ABS( A( I, I ) ).GT.TOLA ) $ K = K + 1 80 CONTINUE * * Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N ) * CALL DORM2R( 'Left', 'Transpose', M, L, MIN( M, N-L ), A, LDA, $ TAU, A( 1, N-L+1 ), LDA, WORK, INFO ) * IF( WANTU ) THEN * * Copy the details of U, and form U * CALL DLASET( 'Full', M, M, ZERO, ZERO, U, LDU ) IF( M.GT.1 ) $ CALL DLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, $ 1 ), $ LDU ) CALL DORG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO ) END IF * IF( WANTQ ) THEN * * Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1 * CALL DLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK ) END IF * * Clean up A: set the strictly lower triangular part of * A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. * DO 100 J = 1, K - 1 DO 90 I = J + 1, K A( I, J ) = ZERO 90 CONTINUE 100 CONTINUE IF( M.GT.K ) $ CALL DLASET( 'Full', M-K, N-L, ZERO, ZERO, A( K+1, 1 ), $ LDA ) * IF( N-L.GT.K ) THEN * * RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 * CALL DGERQ2( K, N-L, A, LDA, TAU, WORK, INFO ) * IF( WANTQ ) THEN * * Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T * CALL DORMR2( 'Right', 'Transpose', N, N-L, K, A, LDA, $ TAU, $ Q, LDQ, WORK, INFO ) END IF * * Clean up A * CALL DLASET( 'Full', K, N-L-K, ZERO, ZERO, A, LDA ) DO 120 J = N - L - K + 1, N - L DO 110 I = J - N + L + K + 1, K A( I, J ) = ZERO 110 CONTINUE 120 CONTINUE * END IF * IF( M.GT.K ) THEN * * QR factorization of A( K+1:M,N-L+1:N ) * CALL DGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO ) * IF( WANTU ) THEN * * Update U(:,K+1:M) := U(:,K+1:M)*U1 * CALL DORM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, $ L ), $ A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU, $ WORK, INFO ) END IF * * Clean up * DO 140 J = N - L + 1, N DO 130 I = J - N + K + L + 1, M A( I, J ) = ZERO 130 CONTINUE 140 CONTINUE * END IF * WORK( 1 ) = DBLE( LWKOPT ) RETURN * * End of DGGSVP3 * END