numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dlaed5.f | 5294B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
*> \brief \b DLAED5 used by DSTEDC. Solves the 2-by-2 secular equation. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLAED5 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed5.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed5.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed5.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DLAED5( I, D, Z, DELTA, RHO, DLAM ) * * .. Scalar Arguments .. * INTEGER I * DOUBLE PRECISION DLAM, RHO * .. * .. Array Arguments .. * DOUBLE PRECISION D( 2 ), DELTA( 2 ), Z( 2 ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> This subroutine computes the I-th eigenvalue of a symmetric rank-one *> modification of a 2-by-2 diagonal matrix *> *> diag( D ) + RHO * Z * transpose(Z) . *> *> The diagonal elements in the array D are assumed to satisfy *> *> D(i) < D(j) for i < j . *> *> We also assume RHO > 0 and that the Euclidean norm of the vector *> Z is one. *> \endverbatim * * Arguments: * ========== * *> \param[in] I *> \verbatim *> I is INTEGER *> The index of the eigenvalue to be computed. I = 1 or I = 2. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is DOUBLE PRECISION array, dimension (2) *> The original eigenvalues. We assume D(1) < D(2). *> \endverbatim *> *> \param[in] Z *> \verbatim *> Z is DOUBLE PRECISION array, dimension (2) *> The components of the updating vector. *> \endverbatim *> *> \param[out] DELTA *> \verbatim *> DELTA is DOUBLE PRECISION array, dimension (2) *> The vector DELTA contains the information necessary *> to construct the eigenvectors. *> \endverbatim *> *> \param[in] RHO *> \verbatim *> RHO is DOUBLE PRECISION *> The scalar in the symmetric updating formula. *> \endverbatim *> *> \param[out] DLAM *> \verbatim *> DLAM is DOUBLE PRECISION *> The computed lambda_I, the I-th updated eigenvalue. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup laed5 * *> \par Contributors: * ================== *> *> Ren-Cang Li, Computer Science Division, University of California *> at Berkeley, USA *> * ===================================================================== SUBROUTINE DLAED5( I, D, Z, DELTA, RHO, DLAM ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER I DOUBLE PRECISION DLAM, RHO * .. * .. Array Arguments .. DOUBLE PRECISION D( 2 ), DELTA( 2 ), Z( 2 ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TWO, FOUR PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0, $ FOUR = 4.0D0 ) * .. * .. Local Scalars .. DOUBLE PRECISION B, C, DEL, TAU, TEMP, W * .. * .. Intrinsic Functions .. INTRINSIC ABS, SQRT * .. * .. Executable Statements .. * DEL = D( 2 ) - D( 1 ) IF( I.EQ.1 ) THEN W = ONE + TWO*RHO*( Z( 2 )*Z( 2 )-Z( 1 )*Z( 1 ) ) / DEL IF( W.GT.ZERO ) THEN B = DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) ) C = RHO*Z( 1 )*Z( 1 )*DEL * * B > ZERO, always * TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) ) DLAM = D( 1 ) + TAU DELTA( 1 ) = -Z( 1 ) / TAU DELTA( 2 ) = Z( 2 ) / ( DEL-TAU ) ELSE B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) ) C = RHO*Z( 2 )*Z( 2 )*DEL IF( B.GT.ZERO ) THEN TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) ) ELSE TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO END IF DLAM = D( 2 ) + TAU DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) DELTA( 2 ) = -Z( 2 ) / TAU END IF TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) DELTA( 1 ) = DELTA( 1 ) / TEMP DELTA( 2 ) = DELTA( 2 ) / TEMP ELSE * * Now I=2 * B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) ) C = RHO*Z( 2 )*Z( 2 )*DEL IF( B.GT.ZERO ) THEN TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO ELSE TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) ) END IF DLAM = D( 2 ) + TAU DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) DELTA( 2 ) = -Z( 2 ) / TAU TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) DELTA( 1 ) = DELTA( 1 ) / TEMP DELTA( 2 ) = DELTA( 2 ) / TEMP END IF RETURN * * End of DLAED5 * END