numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dlalsa.f | 15726B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
*> \brief \b DLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLALSA + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsa.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsa.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsa.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, * LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, * GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK, * IWORK, INFO ) * * .. Scalar Arguments .. * INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS, * $ SMLSIZ * .. * .. Array Arguments .. * INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), * $ K( * ), PERM( LDGCOL, * ) * DOUBLE PRECISION B( LDB, * ), BX( LDBX, * ), C( * ), * $ DIFL( LDU, * ), DIFR( LDU, * ), * $ GIVNUM( LDU, * ), POLES( LDU, * ), S( * ), * $ U( LDU, * ), VT( LDU, * ), WORK( * ), * $ Z( LDU, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLALSA is an intermediate step in solving the least squares problem *> by computing the SVD of the coefficient matrix in compact form (The *> singular vectors are computed as products of simple orthogonal *> matrices.). *> *> If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector *> matrix of an upper bidiagonal matrix to the right hand side; and if *> ICOMPQ = 1, DLALSA applies the right singular vector matrix to the *> right hand side. The singular vector matrices were generated in *> compact form by DLALSA. *> \endverbatim * * Arguments: * ========== * *> \param[in] ICOMPQ *> \verbatim *> ICOMPQ is INTEGER *> Specifies whether the left or the right singular vector *> matrix is involved. *> = 0: Left singular vector matrix *> = 1: Right singular vector matrix *> \endverbatim *> *> \param[in] SMLSIZ *> \verbatim *> SMLSIZ is INTEGER *> The maximum size of the subproblems at the bottom of the *> computation tree. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The row and column dimensions of the upper bidiagonal matrix. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of columns of B and BX. NRHS must be at least 1. *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is DOUBLE PRECISION array, dimension ( LDB, NRHS ) *> On input, B contains the right hand sides of the least *> squares problem in rows 1 through M. *> On output, B contains the solution X in rows 1 through N. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of B in the calling subprogram. *> LDB must be at least max(1,MAX( M, N ) ). *> \endverbatim *> *> \param[out] BX *> \verbatim *> BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS ) *> On exit, the result of applying the left or right singular *> vector matrix to B. *> \endverbatim *> *> \param[in] LDBX *> \verbatim *> LDBX is INTEGER *> The leading dimension of BX. *> \endverbatim *> *> \param[in] U *> \verbatim *> U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ). *> On entry, U contains the left singular vector matrices of all *> subproblems at the bottom level. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER, LDU = > N. *> The leading dimension of arrays U, VT, DIFL, DIFR, *> POLES, GIVNUM, and Z. *> \endverbatim *> *> \param[in] VT *> \verbatim *> VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ). *> On entry, VT**T contains the right singular vector matrices of *> all subproblems at the bottom level. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER array, dimension ( N ). *> \endverbatim *> *> \param[in] DIFL *> \verbatim *> DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ). *> where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. *> \endverbatim *> *> \param[in] DIFR *> \verbatim *> DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). *> On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record *> distances between singular values on the I-th level and *> singular values on the (I -1)-th level, and DIFR(*, 2 * I) *> record the normalizing factors of the right singular vectors *> matrices of subproblems on I-th level. *> \endverbatim *> *> \param[in] Z *> \verbatim *> Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ). *> On entry, Z(1, I) contains the components of the deflation- *> adjusted updating row vector for subproblems on the I-th *> level. *> \endverbatim *> *> \param[in] POLES *> \verbatim *> POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). *> On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old *> singular values involved in the secular equations on the I-th *> level. *> \endverbatim *> *> \param[in] GIVPTR *> \verbatim *> GIVPTR is INTEGER array, dimension ( N ). *> On entry, GIVPTR( I ) records the number of Givens *> rotations performed on the I-th problem on the computation *> tree. *> \endverbatim *> *> \param[in] GIVCOL *> \verbatim *> GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ). *> On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the *> locations of Givens rotations performed on the I-th level on *> the computation tree. *> \endverbatim *> *> \param[in] LDGCOL *> \verbatim *> LDGCOL is INTEGER, LDGCOL = > N. *> The leading dimension of arrays GIVCOL and PERM. *> \endverbatim *> *> \param[in] PERM *> \verbatim *> PERM is INTEGER array, dimension ( LDGCOL, NLVL ). *> On entry, PERM(*, I) records permutations done on the I-th *> level of the computation tree. *> \endverbatim *> *> \param[in] GIVNUM *> \verbatim *> GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). *> On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- *> values of Givens rotations performed on the I-th level on the *> computation tree. *> \endverbatim *> *> \param[in] C *> \verbatim *> C is DOUBLE PRECISION array, dimension ( N ). *> On entry, if the I-th subproblem is not square, *> C( I ) contains the C-value of a Givens rotation related to *> the right null space of the I-th subproblem. *> \endverbatim *> *> \param[in] S *> \verbatim *> S is DOUBLE PRECISION array, dimension ( N ). *> On entry, if the I-th subproblem is not square, *> S( I ) contains the S-value of a Givens rotation related to *> the right null space of the I-th subproblem. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (3*N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup lalsa * *> \par Contributors: * ================== *> *> Ming Gu and Ren-Cang Li, Computer Science Division, University of *> California at Berkeley, USA \n *> Osni Marques, LBNL/NERSC, USA \n * * ===================================================================== SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, $ U, $ LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, $ GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK, $ IWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS, $ SMLSIZ * .. * .. Array Arguments .. INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), $ K( * ), PERM( LDGCOL, * ) DOUBLE PRECISION B( LDB, * ), BX( LDBX, * ), C( * ), $ DIFL( LDU, * ), DIFR( LDU, * ), $ GIVNUM( LDU, * ), POLES( LDU, * ), S( * ), $ U( LDU, * ), VT( LDU, * ), WORK( * ), $ Z( LDU, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. INTEGER I, I1, IC, IM1, INODE, J, LF, LL, LVL, LVL2, $ ND, NDB1, NDIML, NDIMR, NL, NLF, NLP1, NLVL, $ NR, NRF, NRP1, SQRE * .. * .. External Subroutines .. EXTERNAL DCOPY, DGEMM, DLALS0, DLASDT, $ XERBLA * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN INFO = -1 ELSE IF( SMLSIZ.LT.3 ) THEN INFO = -2 ELSE IF( N.LT.SMLSIZ ) THEN INFO = -3 ELSE IF( NRHS.LT.1 ) THEN INFO = -4 ELSE IF( LDB.LT.N ) THEN INFO = -6 ELSE IF( LDBX.LT.N ) THEN INFO = -8 ELSE IF( LDU.LT.N ) THEN INFO = -10 ELSE IF( LDGCOL.LT.N ) THEN INFO = -19 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLALSA', -INFO ) RETURN END IF * * Book-keeping and setting up the computation tree. * INODE = 1 NDIML = INODE + N NDIMR = NDIML + N * CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ), $ IWORK( NDIMR ), SMLSIZ ) * * The following code applies back the left singular vector factors. * For applying back the right singular vector factors, go to 50. * IF( ICOMPQ.EQ.1 ) THEN GO TO 50 END IF * * The nodes on the bottom level of the tree were solved * by DLASDQ. The corresponding left and right singular vector * matrices are in explicit form. First apply back the left * singular vector matrices. * NDB1 = ( ND+1 ) / 2 DO 10 I = NDB1, ND * * IC : center row of each node * NL : number of rows of left subproblem * NR : number of rows of right subproblem * NLF: starting row of the left subproblem * NRF: starting row of the right subproblem * I1 = I - 1 IC = IWORK( INODE+I1 ) NL = IWORK( NDIML+I1 ) NR = IWORK( NDIMR+I1 ) NLF = IC - NL NRF = IC + 1 CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU, $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU, $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) 10 CONTINUE * * Next copy the rows of B that correspond to unchanged rows * in the bidiagonal matrix to BX. * DO 20 I = 1, ND IC = IWORK( INODE+I-1 ) CALL DCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX ) 20 CONTINUE * * Finally go through the left singular vector matrices of all * the other subproblems bottom-up on the tree. * J = 2**NLVL SQRE = 0 * DO 40 LVL = NLVL, 1, -1 LVL2 = 2*LVL - 1 * * find the first node LF and last node LL on * the current level LVL * IF( LVL.EQ.1 ) THEN LF = 1 LL = 1 ELSE LF = 2**( LVL-1 ) LL = 2*LF - 1 END IF DO 30 I = LF, LL IM1 = I - 1 IC = IWORK( INODE+IM1 ) NL = IWORK( NDIML+IM1 ) NR = IWORK( NDIMR+IM1 ) NLF = IC - NL NRF = IC + 1 J = J - 1 CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), $ LDBX, $ B( NLF, 1 ), LDB, PERM( NLF, LVL ), $ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL, $ GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ), $ DIFL( NLF, LVL ), DIFR( NLF, LVL2 ), $ Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK, $ INFO ) 30 CONTINUE 40 CONTINUE GO TO 90 * * ICOMPQ = 1: applying back the right singular vector factors. * 50 CONTINUE * * First now go through the right singular vector matrices of all * the tree nodes top-down. * J = 0 DO 70 LVL = 1, NLVL LVL2 = 2*LVL - 1 * * Find the first node LF and last node LL on * the current level LVL. * IF( LVL.EQ.1 ) THEN LF = 1 LL = 1 ELSE LF = 2**( LVL-1 ) LL = 2*LF - 1 END IF DO 60 I = LL, LF, -1 IM1 = I - 1 IC = IWORK( INODE+IM1 ) NL = IWORK( NDIML+IM1 ) NR = IWORK( NDIMR+IM1 ) NLF = IC - NL NRF = IC + 1 IF( I.EQ.LL ) THEN SQRE = 0 ELSE SQRE = 1 END IF J = J + 1 CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), $ LDB, $ BX( NLF, 1 ), LDBX, PERM( NLF, LVL ), $ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL, $ GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ), $ DIFL( NLF, LVL ), DIFR( NLF, LVL2 ), $ Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK, $ INFO ) 60 CONTINUE 70 CONTINUE * * The nodes on the bottom level of the tree were solved * by DLASDQ. The corresponding right singular vector * matrices are in explicit form. Apply them back. * NDB1 = ( ND+1 ) / 2 DO 80 I = NDB1, ND I1 = I - 1 IC = IWORK( INODE+I1 ) NL = IWORK( NDIML+I1 ) NR = IWORK( NDIMR+I1 ) NLP1 = NL + 1 IF( I.EQ.ND ) THEN NRP1 = NR ELSE NRP1 = NR + 1 END IF NLF = IC - NL NRF = IC + 1 CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), $ LDU, $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), $ LDU, $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) 80 CONTINUE * 90 CONTINUE * RETURN * * End of DLALSA * END