numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dlaneg.f | 6856B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
*> \brief \b DLANEG computes the Sturm count. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLANEG + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaneg.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaneg.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaneg.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * INTEGER FUNCTION DLANEG( N, D, LLD, SIGMA, PIVMIN, R ) * * .. Scalar Arguments .. * INTEGER N, R * DOUBLE PRECISION PIVMIN, SIGMA * .. * .. Array Arguments .. * DOUBLE PRECISION D( * ), LLD( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLANEG computes the Sturm count, the number of negative pivots *> encountered while factoring tridiagonal T - sigma I = L D L^T. *> This implementation works directly on the factors without forming *> the tridiagonal matrix T. The Sturm count is also the number of *> eigenvalues of T less than sigma. *> *> This routine is called from DLARRB. *> *> The current routine does not use the PIVMIN parameter but rather *> requires IEEE-754 propagation of Infinities and NaNs. This *> routine also has no input range restrictions but does require *> default exception handling such that x/0 produces Inf when x is *> non-zero, and Inf/Inf produces NaN. For more information, see: *> *> Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in *> Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on *> Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624 *> (Tech report version in LAWN 172 with the same title.) *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is DOUBLE PRECISION array, dimension (N) *> The N diagonal elements of the diagonal matrix D. *> \endverbatim *> *> \param[in] LLD *> \verbatim *> LLD is DOUBLE PRECISION array, dimension (N-1) *> The (N-1) elements L(i)*L(i)*D(i). *> \endverbatim *> *> \param[in] SIGMA *> \verbatim *> SIGMA is DOUBLE PRECISION *> Shift amount in T - sigma I = L D L^T. *> \endverbatim *> *> \param[in] PIVMIN *> \verbatim *> PIVMIN is DOUBLE PRECISION *> The minimum pivot in the Sturm sequence. May be used *> when zero pivots are encountered on non-IEEE-754 *> architectures. *> \endverbatim *> *> \param[in] R *> \verbatim *> R is INTEGER *> The twist index for the twisted factorization that is used *> for the negcount. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup laneg * *> \par Contributors: * ================== *> *> Osni Marques, LBNL/NERSC, USA \n *> Christof Voemel, University of California, Berkeley, USA \n *> Jason Riedy, University of California, Berkeley, USA \n *> * ===================================================================== INTEGER FUNCTION DLANEG( N, D, LLD, SIGMA, PIVMIN, R ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER N, R DOUBLE PRECISION PIVMIN, SIGMA * .. * .. Array Arguments .. DOUBLE PRECISION D( * ), LLD( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * Some architectures propagate Infinities and NaNs very slowly, so * the code computes counts in BLKLEN chunks. Then a NaN can * propagate at most BLKLEN columns before being detected. This is * not a general tuning parameter; it needs only to be just large * enough that the overhead is tiny in common cases. INTEGER BLKLEN PARAMETER ( BLKLEN = 128 ) * .. * .. Local Scalars .. INTEGER BJ, J, NEG1, NEG2, NEGCNT DOUBLE PRECISION BSAV, DMINUS, DPLUS, GAMMA, P, T, TMP LOGICAL SAWNAN * .. * .. Intrinsic Functions .. INTRINSIC MIN, MAX * .. * .. External Functions .. LOGICAL DISNAN EXTERNAL DISNAN * .. * .. Executable Statements .. NEGCNT = 0 * I) upper part: L D L^T - SIGMA I = L+ D+ L+^T T = -SIGMA DO 210 BJ = 1, R-1, BLKLEN NEG1 = 0 BSAV = T DO 21 J = BJ, MIN(BJ+BLKLEN-1, R-1) DPLUS = D( J ) + T IF( DPLUS.LT.ZERO ) NEG1 = NEG1 + 1 TMP = T / DPLUS T = TMP * LLD( J ) - SIGMA 21 CONTINUE SAWNAN = DISNAN( T ) * Run a slower version of the above loop if a NaN is detected. * A NaN should occur only with a zero pivot after an infinite * pivot. In that case, substituting 1 for T/DPLUS is the * correct limit. IF( SAWNAN ) THEN NEG1 = 0 T = BSAV DO 22 J = BJ, MIN(BJ+BLKLEN-1, R-1) DPLUS = D( J ) + T IF( DPLUS.LT.ZERO ) NEG1 = NEG1 + 1 TMP = T / DPLUS IF (DISNAN(TMP)) TMP = ONE T = TMP * LLD(J) - SIGMA 22 CONTINUE END IF NEGCNT = NEGCNT + NEG1 210 CONTINUE * * II) lower part: L D L^T - SIGMA I = U- D- U-^T P = D( N ) - SIGMA DO 230 BJ = N-1, R, -BLKLEN NEG2 = 0 BSAV = P DO 23 J = BJ, MAX(BJ-BLKLEN+1, R), -1 DMINUS = LLD( J ) + P IF( DMINUS.LT.ZERO ) NEG2 = NEG2 + 1 TMP = P / DMINUS P = TMP * D( J ) - SIGMA 23 CONTINUE SAWNAN = DISNAN( P ) * As above, run a slower version that substitutes 1 for Inf/Inf. * IF( SAWNAN ) THEN NEG2 = 0 P = BSAV DO 24 J = BJ, MAX(BJ-BLKLEN+1, R), -1 DMINUS = LLD( J ) + P IF( DMINUS.LT.ZERO ) NEG2 = NEG2 + 1 TMP = P / DMINUS IF (DISNAN(TMP)) TMP = ONE P = TMP * D(J) - SIGMA 24 CONTINUE END IF NEGCNT = NEGCNT + NEG2 230 CONTINUE * * III) Twist index * T was shifted by SIGMA initially. GAMMA = (T + SIGMA) + P IF( GAMMA.LT.ZERO ) NEGCNT = NEGCNT+1 DLANEG = NEGCNT END