numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dlantb.f | 11523B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
*> \brief \b DLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLANTB + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlantb.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlantb.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlantb.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * DOUBLE PRECISION FUNCTION DLANTB( NORM, UPLO, DIAG, N, K, AB, * LDAB, WORK ) * * .. Scalar Arguments .. * CHARACTER DIAG, NORM, UPLO * INTEGER K, LDAB, N * .. * .. Array Arguments .. * DOUBLE PRECISION AB( LDAB, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLANTB returns the value of the one norm, or the Frobenius norm, or *> the infinity norm, or the element of largest absolute value of an *> n by n triangular band matrix A, with ( k + 1 ) diagonals. *> \endverbatim *> *> \return DLANTB *> \verbatim *> *> DLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm' *> ( *> ( norm1(A), NORM = '1', 'O' or 'o' *> ( *> ( normI(A), NORM = 'I' or 'i' *> ( *> ( normF(A), NORM = 'F', 'f', 'E' or 'e' *> *> where norm1 denotes the one norm of a matrix (maximum column sum), *> normI denotes the infinity norm of a matrix (maximum row sum) and *> normF denotes the Frobenius norm of a matrix (square root of sum of *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. *> \endverbatim * * Arguments: * ========== * *> \param[in] NORM *> \verbatim *> NORM is CHARACTER*1 *> Specifies the value to be returned in DLANTB as described *> above. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the matrix A is upper or lower triangular. *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] DIAG *> \verbatim *> DIAG is CHARACTER*1 *> Specifies whether or not the matrix A is unit triangular. *> = 'N': Non-unit triangular *> = 'U': Unit triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. When N = 0, DLANTB is *> set to zero. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER *> The number of super-diagonals of the matrix A if UPLO = 'U', *> or the number of sub-diagonals of the matrix A if UPLO = 'L'. *> K >= 0. *> \endverbatim *> *> \param[in] AB *> \verbatim *> AB is DOUBLE PRECISION array, dimension (LDAB,N) *> The upper or lower triangular band matrix A, stored in the *> first k+1 rows of AB. The j-th column of A is stored *> in the j-th column of the array AB as follows: *> if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). *> Note that when DIAG = 'U', the elements of the array AB *> corresponding to the diagonal elements of the matrix A are *> not referenced, but are assumed to be one. *> \endverbatim *> *> \param[in] LDAB *> \verbatim *> LDAB is INTEGER *> The leading dimension of the array AB. LDAB >= K+1. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not *> referenced. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup lantb * * ===================================================================== DOUBLE PRECISION FUNCTION DLANTB( NORM, UPLO, DIAG, N, K, AB, $ LDAB, WORK ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER DIAG, NORM, UPLO INTEGER K, LDAB, N * .. * .. Array Arguments .. DOUBLE PRECISION AB( LDAB, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. LOGICAL UDIAG INTEGER I, J, L DOUBLE PRECISION SCALE, SUM, VALUE * .. * .. External Subroutines .. EXTERNAL DLASSQ * .. * .. External Functions .. LOGICAL LSAME, DISNAN EXTERNAL LSAME, DISNAN * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT * .. * .. Executable Statements .. * IF( N.EQ.0 ) THEN VALUE = ZERO ELSE IF( LSAME( NORM, 'M' ) ) THEN * * Find max(abs(A(i,j))). * IF( LSAME( DIAG, 'U' ) ) THEN VALUE = ONE IF( LSAME( UPLO, 'U' ) ) THEN DO 20 J = 1, N DO 10 I = MAX( K+2-J, 1 ), K SUM = ABS( AB( I, J ) ) IF( VALUE .LT. SUM .OR. $ DISNAN( SUM ) ) VALUE = SUM 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1, N DO 30 I = 2, MIN( N+1-J, K+1 ) SUM = ABS( AB( I, J ) ) IF( VALUE .LT. SUM .OR. $ DISNAN( SUM ) ) VALUE = SUM 30 CONTINUE 40 CONTINUE END IF ELSE VALUE = ZERO IF( LSAME( UPLO, 'U' ) ) THEN DO 60 J = 1, N DO 50 I = MAX( K+2-J, 1 ), K + 1 SUM = ABS( AB( I, J ) ) IF( VALUE .LT. SUM .OR. $ DISNAN( SUM ) ) VALUE = SUM 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1, N DO 70 I = 1, MIN( N+1-J, K+1 ) SUM = ABS( AB( I, J ) ) IF( VALUE .LT. SUM .OR. $ DISNAN( SUM ) ) VALUE = SUM 70 CONTINUE 80 CONTINUE END IF END IF ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN * * Find norm1(A). * VALUE = ZERO UDIAG = LSAME( DIAG, 'U' ) IF( LSAME( UPLO, 'U' ) ) THEN DO 110 J = 1, N IF( UDIAG ) THEN SUM = ONE DO 90 I = MAX( K+2-J, 1 ), K SUM = SUM + ABS( AB( I, J ) ) 90 CONTINUE ELSE SUM = ZERO DO 100 I = MAX( K+2-J, 1 ), K + 1 SUM = SUM + ABS( AB( I, J ) ) 100 CONTINUE END IF IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 110 CONTINUE ELSE DO 140 J = 1, N IF( UDIAG ) THEN SUM = ONE DO 120 I = 2, MIN( N+1-J, K+1 ) SUM = SUM + ABS( AB( I, J ) ) 120 CONTINUE ELSE SUM = ZERO DO 130 I = 1, MIN( N+1-J, K+1 ) SUM = SUM + ABS( AB( I, J ) ) 130 CONTINUE END IF IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 140 CONTINUE END IF ELSE IF( LSAME( NORM, 'I' ) ) THEN * * Find normI(A). * VALUE = ZERO IF( LSAME( UPLO, 'U' ) ) THEN IF( LSAME( DIAG, 'U' ) ) THEN DO 150 I = 1, N WORK( I ) = ONE 150 CONTINUE DO 170 J = 1, N L = K + 1 - J DO 160 I = MAX( 1, J-K ), J - 1 WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) ) 160 CONTINUE 170 CONTINUE ELSE DO 180 I = 1, N WORK( I ) = ZERO 180 CONTINUE DO 200 J = 1, N L = K + 1 - J DO 190 I = MAX( 1, J-K ), J WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) ) 190 CONTINUE 200 CONTINUE END IF ELSE IF( LSAME( DIAG, 'U' ) ) THEN DO 210 I = 1, N WORK( I ) = ONE 210 CONTINUE DO 230 J = 1, N L = 1 - J DO 220 I = J + 1, MIN( N, J+K ) WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) ) 220 CONTINUE 230 CONTINUE ELSE DO 240 I = 1, N WORK( I ) = ZERO 240 CONTINUE DO 260 J = 1, N L = 1 - J DO 250 I = J, MIN( N, J+K ) WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) ) 250 CONTINUE 260 CONTINUE END IF END IF DO 270 I = 1, N SUM = WORK( I ) IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 270 CONTINUE ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. $ ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). * IF( LSAME( UPLO, 'U' ) ) THEN IF( LSAME( DIAG, 'U' ) ) THEN SCALE = ONE SUM = N IF( K.GT.0 ) THEN DO 280 J = 2, N CALL DLASSQ( MIN( J-1, K ), $ AB( MAX( K+2-J, 1 ), J ), 1, SCALE, $ SUM ) 280 CONTINUE END IF ELSE SCALE = ZERO SUM = ONE DO 290 J = 1, N CALL DLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), $ J ), $ 1, SCALE, SUM ) 290 CONTINUE END IF ELSE IF( LSAME( DIAG, 'U' ) ) THEN SCALE = ONE SUM = N IF( K.GT.0 ) THEN DO 300 J = 1, N - 1 CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1, $ SCALE, $ SUM ) 300 CONTINUE END IF ELSE SCALE = ZERO SUM = ONE DO 310 J = 1, N CALL DLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1, $ SCALE, $ SUM ) 310 CONTINUE END IF END IF VALUE = SCALE*SQRT( SUM ) END IF * DLANTB = VALUE RETURN * * End of DLANTB * END