numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dlaqr5.f | 30481B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
*> \brief \b DLAQR5 performs a single small-bulge multi-shift QR sweep. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLAQR5 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr5.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr5.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr5.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, * SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, * LDU, NV, WV, LDWV, NH, WH, LDWH ) * * .. Scalar Arguments .. * INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV, * $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV * LOGICAL WANTT, WANTZ * .. * .. Array Arguments .. * DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), U( LDU, * ), * $ V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ), * $ Z( LDZ, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLAQR5, called by DLAQR0, performs a *> single small-bulge multi-shift QR sweep. *> \endverbatim * * Arguments: * ========== * *> \param[in] WANTT *> \verbatim *> WANTT is LOGICAL *> WANTT = .true. if the quasi-triangular Schur factor *> is being computed. WANTT is set to .false. otherwise. *> \endverbatim *> *> \param[in] WANTZ *> \verbatim *> WANTZ is LOGICAL *> WANTZ = .true. if the orthogonal Schur factor is being *> computed. WANTZ is set to .false. otherwise. *> \endverbatim *> *> \param[in] KACC22 *> \verbatim *> KACC22 is INTEGER with value 0, 1, or 2. *> Specifies the computation mode of far-from-diagonal *> orthogonal updates. *> = 0: DLAQR5 does not accumulate reflections and does not *> use matrix-matrix multiply to update far-from-diagonal *> matrix entries. *> = 1: DLAQR5 accumulates reflections and uses matrix-matrix *> multiply to update the far-from-diagonal matrix entries. *> = 2: Same as KACC22 = 1. This option used to enable exploiting *> the 2-by-2 structure during matrix multiplications, but *> this is no longer supported. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> N is the order of the Hessenberg matrix H upon which this *> subroutine operates. *> \endverbatim *> *> \param[in] KTOP *> \verbatim *> KTOP is INTEGER *> \endverbatim *> *> \param[in] KBOT *> \verbatim *> KBOT is INTEGER *> These are the first and last rows and columns of an *> isolated diagonal block upon which the QR sweep is to be *> applied. It is assumed without a check that *> either KTOP = 1 or H(KTOP,KTOP-1) = 0 *> and *> either KBOT = N or H(KBOT+1,KBOT) = 0. *> \endverbatim *> *> \param[in] NSHFTS *> \verbatim *> NSHFTS is INTEGER *> NSHFTS gives the number of simultaneous shifts. NSHFTS *> must be positive and even. *> \endverbatim *> *> \param[in,out] SR *> \verbatim *> SR is DOUBLE PRECISION array, dimension (NSHFTS) *> \endverbatim *> *> \param[in,out] SI *> \verbatim *> SI is DOUBLE PRECISION array, dimension (NSHFTS) *> SR contains the real parts and SI contains the imaginary *> parts of the NSHFTS shifts of origin that define the *> multi-shift QR sweep. On output SR and SI may be *> reordered. *> \endverbatim *> *> \param[in,out] H *> \verbatim *> H is DOUBLE PRECISION array, dimension (LDH,N) *> On input H contains a Hessenberg matrix. On output a *> multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied *> to the isolated diagonal block in rows and columns KTOP *> through KBOT. *> \endverbatim *> *> \param[in] LDH *> \verbatim *> LDH is INTEGER *> LDH is the leading dimension of H just as declared in the *> calling procedure. LDH >= MAX(1,N). *> \endverbatim *> *> \param[in] ILOZ *> \verbatim *> ILOZ is INTEGER *> \endverbatim *> *> \param[in] IHIZ *> \verbatim *> IHIZ is INTEGER *> Specify the rows of Z to which transformations must be *> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is DOUBLE PRECISION array, dimension (LDZ,IHIZ) *> If WANTZ = .TRUE., then the QR Sweep orthogonal *> similarity transformation is accumulated into *> Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. *> If WANTZ = .FALSE., then Z is unreferenced. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> LDA is the leading dimension of Z just as declared in *> the calling procedure. LDZ >= N. *> \endverbatim *> *> \param[out] V *> \verbatim *> V is DOUBLE PRECISION array, dimension (LDV,NSHFTS/2) *> \endverbatim *> *> \param[in] LDV *> \verbatim *> LDV is INTEGER *> LDV is the leading dimension of V as declared in the *> calling procedure. LDV >= 3. *> \endverbatim *> *> \param[out] U *> \verbatim *> U is DOUBLE PRECISION array, dimension (LDU,2*NSHFTS) *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> LDU is the leading dimension of U just as declared in the *> in the calling subroutine. LDU >= 2*NSHFTS. *> \endverbatim *> *> \param[in] NV *> \verbatim *> NV is INTEGER *> NV is the number of rows in WV agailable for workspace. *> NV >= 1. *> \endverbatim *> *> \param[out] WV *> \verbatim *> WV is DOUBLE PRECISION array, dimension (LDWV,2*NSHFTS) *> \endverbatim *> *> \param[in] LDWV *> \verbatim *> LDWV is INTEGER *> LDWV is the leading dimension of WV as declared in the *> in the calling subroutine. LDWV >= NV. *> \endverbatim * *> \param[in] NH *> \verbatim *> NH is INTEGER *> NH is the number of columns in array WH available for *> workspace. NH >= 1. *> \endverbatim *> *> \param[out] WH *> \verbatim *> WH is DOUBLE PRECISION array, dimension (LDWH,NH) *> \endverbatim *> *> \param[in] LDWH *> \verbatim *> LDWH is INTEGER *> Leading dimension of WH just as declared in the *> calling procedure. LDWH >= 2*NSHFTS. *> \endverbatim *> * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup laqr5 * *> \par Contributors: * ================== *> *> Karen Braman and Ralph Byers, Department of Mathematics, *> University of Kansas, USA *> *> Lars Karlsson, Daniel Kressner, and Bruno Lang *> *> Thijs Steel, Department of Computer science, *> KU Leuven, Belgium * *> \par References: * ================ *> *> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR *> Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 *> Performance, SIAM Journal of Matrix Analysis, volume 23, pages *> 929--947, 2002. *> *> Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed *> chains of bulges in multishift QR algorithms. *> ACM Trans. Math. Softw. 40, 2, Article 12 (February 2014). *> * ===================================================================== SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, $ SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, $ LDU, NV, WV, LDWV, NH, WH, LDWH ) IMPLICIT NONE * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV, $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV LOGICAL WANTT, WANTZ * .. * .. Array Arguments .. DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), U( LDU, * ), $ V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ), $ Z( LDZ, * ) * .. * * ================================================================ * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 ) * .. * .. Local Scalars .. DOUBLE PRECISION ALPHA, BETA, H11, H12, H21, H22, REFSUM, $ SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, T1, T2, $ T3, TST1, TST2, ULP INTEGER I, I2, I4, INCOL, J, JBOT, JCOL, JLEN, $ JROW, JTOP, K, K1, KDU, KMS, KRCOL, $ M, M22, MBOT, MTOP, NBMPS, NDCOL, $ NS, NU LOGICAL ACCUM, BMP22 * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. Intrinsic Functions .. * INTRINSIC ABS, DBLE, MAX, MIN, MOD * .. * .. Local Arrays .. DOUBLE PRECISION VT( 3 ) * .. * .. External Subroutines .. EXTERNAL DGEMM, DLACPY, DLAQR1, DLARFG, DLASET, $ DTRMM * .. * .. Executable Statements .. * * ==== If there are no shifts, then there is nothing to do. ==== * IF( NSHFTS.LT.2 ) $ RETURN * * ==== If the active block is empty or 1-by-1, then there * . is nothing to do. ==== * IF( KTOP.GE.KBOT ) $ RETURN * * ==== Shuffle shifts into pairs of real shifts and pairs * . of complex conjugate shifts assuming complex * . conjugate shifts are already adjacent to one * . another. ==== * DO 10 I = 1, NSHFTS - 2, 2 IF( SI( I ).NE.-SI( I+1 ) ) THEN * SWAP = SR( I ) SR( I ) = SR( I+1 ) SR( I+1 ) = SR( I+2 ) SR( I+2 ) = SWAP * SWAP = SI( I ) SI( I ) = SI( I+1 ) SI( I+1 ) = SI( I+2 ) SI( I+2 ) = SWAP END IF 10 CONTINUE * * ==== NSHFTS is supposed to be even, but if it is odd, * . then simply reduce it by one. The shuffle above * . ensures that the dropped shift is real and that * . the remaining shifts are paired. ==== * NS = NSHFTS - MOD( NSHFTS, 2 ) * * ==== Machine constants for deflation ==== * SAFMIN = DLAMCH( 'SAFE MINIMUM' ) SAFMAX = ONE / SAFMIN ULP = DLAMCH( 'PRECISION' ) SMLNUM = SAFMIN*( DBLE( N ) / ULP ) * * ==== Use accumulated reflections to update far-from-diagonal * . entries ? ==== * ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 ) * * ==== clear trash ==== * IF( KTOP+2.LE.KBOT ) $ H( KTOP+2, KTOP ) = ZERO * * ==== NBMPS = number of 2-shift bulges in the chain ==== * NBMPS = NS / 2 * * ==== KDU = width of slab ==== * KDU = 4*NBMPS * * ==== Create and chase chains of NBMPS bulges ==== * DO 180 INCOL = KTOP - 2*NBMPS + 1, KBOT - 2, 2*NBMPS * * JTOP = Index from which updates from the right start. * IF( ACCUM ) THEN JTOP = MAX( KTOP, INCOL ) ELSE IF( WANTT ) THEN JTOP = 1 ELSE JTOP = KTOP END IF * NDCOL = INCOL + KDU IF( ACCUM ) $ CALL DLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU ) * * ==== Near-the-diagonal bulge chase. The following loop * . performs the near-the-diagonal part of a small bulge * . multi-shift QR sweep. Each 4*NBMPS column diagonal * . chunk extends from column INCOL to column NDCOL * . (including both column INCOL and column NDCOL). The * . following loop chases a 2*NBMPS+1 column long chain of * . NBMPS bulges 2*NBMPS columns to the right. (INCOL * . may be less than KTOP and and NDCOL may be greater than * . KBOT indicating phantom columns from which to chase * . bulges before they are actually introduced or to which * . to chase bulges beyond column KBOT.) ==== * DO 145 KRCOL = INCOL, MIN( INCOL+2*NBMPS-1, KBOT-2 ) * * ==== Bulges number MTOP to MBOT are active double implicit * . shift bulges. There may or may not also be small * . 2-by-2 bulge, if there is room. The inactive bulges * . (if any) must wait until the active bulges have moved * . down the diagonal to make room. The phantom matrix * . paradigm described above helps keep track. ==== * MTOP = MAX( 1, ( KTOP-KRCOL ) / 2+1 ) MBOT = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 2 ) M22 = MBOT + 1 BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+2*( M22-1 ) ).EQ. $ ( KBOT-2 ) * * ==== Generate reflections to chase the chain right * . one column. (The minimum value of K is KTOP-1.) ==== * IF ( BMP22 ) THEN * * ==== Special case: 2-by-2 reflection at bottom treated * . separately ==== * K = KRCOL + 2*( M22-1 ) IF( K.EQ.KTOP-1 ) THEN CALL DLAQR1( 2, H( K+1, K+1 ), LDH, SR( 2*M22-1 ), $ SI( 2*M22-1 ), SR( 2*M22 ), SI( 2*M22 ), $ V( 1, M22 ) ) BETA = V( 1, M22 ) CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) ) ELSE BETA = H( K+1, K ) V( 2, M22 ) = H( K+2, K ) CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) ) H( K+1, K ) = BETA H( K+2, K ) = ZERO END IF * * ==== Perform update from right within * . computational window. ==== * T1 = V( 1, M22 ) T2 = T1*V( 2, M22 ) DO 30 J = JTOP, MIN( KBOT, K+3 ) REFSUM = H( J, K+1 ) + V( 2, M22 )*H( J, K+2 ) H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1 H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2 30 CONTINUE * * ==== Perform update from left within * . computational window. ==== * IF( ACCUM ) THEN JBOT = MIN( NDCOL, KBOT ) ELSE IF( WANTT ) THEN JBOT = N ELSE JBOT = KBOT END IF T1 = V( 1, M22 ) T2 = T1*V( 2, M22 ) DO 40 J = K+1, JBOT REFSUM = H( K+1, J ) + V( 2, M22 )*H( K+2, J ) H( K+1, J ) = H( K+1, J ) - REFSUM*T1 H( K+2, J ) = H( K+2, J ) - REFSUM*T2 40 CONTINUE * * ==== The following convergence test requires that * . the tradition small-compared-to-nearby-diagonals * . criterion and the Ahues & Tisseur (LAWN 122, 1997) * . criteria both be satisfied. The latter improves * . accuracy in some examples. Falling back on an * . alternate convergence criterion when TST1 or TST2 * . is zero (as done here) is traditional but probably * . unnecessary. ==== * IF( K.GE.KTOP ) THEN IF( H( K+1, K ).NE.ZERO ) THEN TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) ) IF( TST1.EQ.ZERO ) THEN IF( K.GE.KTOP+1 ) $ TST1 = TST1 + ABS( H( K, K-1 ) ) IF( K.GE.KTOP+2 ) $ TST1 = TST1 + ABS( H( K, K-2 ) ) IF( K.GE.KTOP+3 ) $ TST1 = TST1 + ABS( H( K, K-3 ) ) IF( K.LE.KBOT-2 ) $ TST1 = TST1 + ABS( H( K+2, K+1 ) ) IF( K.LE.KBOT-3 ) $ TST1 = TST1 + ABS( H( K+3, K+1 ) ) IF( K.LE.KBOT-4 ) $ TST1 = TST1 + ABS( H( K+4, K+1 ) ) END IF IF( ABS( H( K+1, K ) ) $ .LE.MAX( SMLNUM, ULP*TST1 ) ) THEN H12 = MAX( ABS( H( K+1, K ) ), $ ABS( H( K, K+1 ) ) ) H21 = MIN( ABS( H( K+1, K ) ), $ ABS( H( K, K+1 ) ) ) H11 = MAX( ABS( H( K+1, K+1 ) ), $ ABS( H( K, K )-H( K+1, K+1 ) ) ) H22 = MIN( ABS( H( K+1, K+1 ) ), $ ABS( H( K, K )-H( K+1, K+1 ) ) ) SCL = H11 + H12 TST2 = H22*( H11 / SCL ) * IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE. $ MAX( SMLNUM, ULP*TST2 ) ) THEN H( K+1, K ) = ZERO END IF END IF END IF END IF * * ==== Accumulate orthogonal transformations. ==== * IF( ACCUM ) THEN KMS = K - INCOL T1 = V( 1, M22 ) T2 = T1*V( 2, M22 ) DO 50 J = MAX( 1, KTOP-INCOL ), KDU REFSUM = U( J, KMS+1 ) + V( 2, M22 )*U( J, KMS+2 ) U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1 U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2 50 CONTINUE ELSE IF( WANTZ ) THEN T1 = V( 1, M22 ) T2 = T1*V( 2, M22 ) DO 60 J = ILOZ, IHIZ REFSUM = Z( J, K+1 )+V( 2, M22 )*Z( J, K+2 ) Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1 Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2 60 CONTINUE END IF END IF * * ==== Normal case: Chain of 3-by-3 reflections ==== * DO 80 M = MBOT, MTOP, -1 K = KRCOL + 2*( M-1 ) IF( K.EQ.KTOP-1 ) THEN CALL DLAQR1( 3, H( KTOP, KTOP ), LDH, SR( 2*M-1 ), $ SI( 2*M-1 ), SR( 2*M ), SI( 2*M ), $ V( 1, M ) ) ALPHA = V( 1, M ) CALL DLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) ) ELSE * * ==== Perform delayed transformation of row below * . Mth bulge. Exploit fact that first two elements * . of row are actually zero. ==== * T1 = V( 1, M ) T2 = T1*V( 2, M ) T3 = T1*V( 3, M ) REFSUM = V( 3, M )*H( K+3, K+2 ) H( K+3, K ) = -REFSUM*T1 H( K+3, K+1 ) = -REFSUM*T2 H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*T3 * * ==== Calculate reflection to move * . Mth bulge one step. ==== * BETA = H( K+1, K ) V( 2, M ) = H( K+2, K ) V( 3, M ) = H( K+3, K ) CALL DLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) ) * * ==== A Bulge may collapse because of vigilant * . deflation or destructive underflow. In the * . underflow case, try the two-small-subdiagonals * . trick to try to reinflate the bulge. ==== * IF( H( K+3, K ).NE.ZERO .OR. H( K+3, K+1 ).NE. $ ZERO .OR. H( K+3, K+2 ).EQ.ZERO ) THEN * * ==== Typical case: not collapsed (yet). ==== * H( K+1, K ) = BETA H( K+2, K ) = ZERO H( K+3, K ) = ZERO ELSE * * ==== Atypical case: collapsed. Attempt to * . reintroduce ignoring H(K+1,K) and H(K+2,K). * . If the fill resulting from the new * . reflector is too large, then abandon it. * . Otherwise, use the new one. ==== * CALL DLAQR1( 3, H( K+1, K+1 ), LDH, SR( 2*M-1 ), $ SI( 2*M-1 ), SR( 2*M ), SI( 2*M ), $ VT ) ALPHA = VT( 1 ) CALL DLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) ) T1 = VT( 1 ) T2 = T1*VT( 2 ) T3 = T1*VT( 3 ) REFSUM = H( K+1, K ) + VT( 2 )*H( K+2, K ) * IF( ABS( H( K+2, K )-REFSUM*T2 )+ $ ABS( REFSUM*T3 ).GT.ULP* $ ( ABS( H( K, K ) )+ABS( H( K+1, $ K+1 ) )+ABS( H( K+2, K+2 ) ) ) ) THEN * * ==== Starting a new bulge here would * . create non-negligible fill. Use * . the old one with trepidation. ==== * H( K+1, K ) = BETA H( K+2, K ) = ZERO H( K+3, K ) = ZERO ELSE * * ==== Starting a new bulge here would * . create only negligible fill. * . Replace the old reflector with * . the new one. ==== * H( K+1, K ) = H( K+1, K ) - REFSUM*T1 H( K+2, K ) = ZERO H( K+3, K ) = ZERO V( 1, M ) = VT( 1 ) V( 2, M ) = VT( 2 ) V( 3, M ) = VT( 3 ) END IF END IF END IF * * ==== Apply reflection from the right and * . the first column of update from the left. * . These updates are required for the vigilant * . deflation check. We still delay most of the * . updates from the left for efficiency. ==== * T1 = V( 1, M ) T2 = T1*V( 2, M ) T3 = T1*V( 3, M ) DO 70 J = JTOP, MIN( KBOT, K+3 ) REFSUM = H( J, K+1 ) + V( 2, M )*H( J, K+2 ) $ + V( 3, M )*H( J, K+3 ) H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1 H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2 H( J, K+3 ) = H( J, K+3 ) - REFSUM*T3 70 CONTINUE * * ==== Perform update from left for subsequent * . column. ==== * REFSUM = H( K+1, K+1 ) + V( 2, M )*H( K+2, K+1 ) $ + V( 3, M )*H( K+3, K+1 ) H( K+1, K+1 ) = H( K+1, K+1 ) - REFSUM*T1 H( K+2, K+1 ) = H( K+2, K+1 ) - REFSUM*T2 H( K+3, K+1 ) = H( K+3, K+1 ) - REFSUM*T3 * * ==== The following convergence test requires that * . the tradition small-compared-to-nearby-diagonals * . criterion and the Ahues & Tisseur (LAWN 122, 1997) * . criteria both be satisfied. The latter improves * . accuracy in some examples. Falling back on an * . alternate convergence criterion when TST1 or TST2 * . is zero (as done here) is traditional but probably * . unnecessary. ==== * IF( K.LT.KTOP) $ CYCLE IF( H( K+1, K ).NE.ZERO ) THEN TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) ) IF( TST1.EQ.ZERO ) THEN IF( K.GE.KTOP+1 ) $ TST1 = TST1 + ABS( H( K, K-1 ) ) IF( K.GE.KTOP+2 ) $ TST1 = TST1 + ABS( H( K, K-2 ) ) IF( K.GE.KTOP+3 ) $ TST1 = TST1 + ABS( H( K, K-3 ) ) IF( K.LE.KBOT-2 ) $ TST1 = TST1 + ABS( H( K+2, K+1 ) ) IF( K.LE.KBOT-3 ) $ TST1 = TST1 + ABS( H( K+3, K+1 ) ) IF( K.LE.KBOT-4 ) $ TST1 = TST1 + ABS( H( K+4, K+1 ) ) END IF IF( ABS( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) ) $ THEN H12 = MAX( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) ) H21 = MIN( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) ) H11 = MAX( ABS( H( K+1, K+1 ) ), $ ABS( H( K, K )-H( K+1, K+1 ) ) ) H22 = MIN( ABS( H( K+1, K+1 ) ), $ ABS( H( K, K )-H( K+1, K+1 ) ) ) SCL = H11 + H12 TST2 = H22*( H11 / SCL ) * IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE. $ MAX( SMLNUM, ULP*TST2 ) ) THEN H( K+1, K ) = ZERO END IF END IF END IF 80 CONTINUE * * ==== Multiply H by reflections from the left ==== * IF( ACCUM ) THEN JBOT = MIN( NDCOL, KBOT ) ELSE IF( WANTT ) THEN JBOT = N ELSE JBOT = KBOT END IF * DO 100 M = MBOT, MTOP, -1 K = KRCOL + 2*( M-1 ) T1 = V( 1, M ) T2 = T1*V( 2, M ) T3 = T1*V( 3, M ) DO 90 J = MAX( KTOP, KRCOL + 2*M ), JBOT REFSUM = H( K+1, J ) + V( 2, M )*H( K+2, J ) $ + V( 3, M )*H( K+3, J ) H( K+1, J ) = H( K+1, J ) - REFSUM*T1 H( K+2, J ) = H( K+2, J ) - REFSUM*T2 H( K+3, J ) = H( K+3, J ) - REFSUM*T3 90 CONTINUE 100 CONTINUE * * ==== Accumulate orthogonal transformations. ==== * IF( ACCUM ) THEN * * ==== Accumulate U. (If needed, update Z later * . with an efficient matrix-matrix * . multiply.) ==== * DO 120 M = MBOT, MTOP, -1 K = KRCOL + 2*( M-1 ) KMS = K - INCOL I2 = MAX( 1, KTOP-INCOL ) I2 = MAX( I2, KMS-(KRCOL-INCOL)+1 ) I4 = MIN( KDU, KRCOL + 2*( MBOT-1 ) - INCOL + 5 ) T1 = V( 1, M ) T2 = T1*V( 2, M ) T3 = T1*V( 3, M ) DO 110 J = I2, I4 REFSUM = U( J, KMS+1 ) + V( 2, M )*U( J, KMS+2 ) $ + V( 3, M )*U( J, KMS+3 ) U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1 U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2 U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*T3 110 CONTINUE 120 CONTINUE ELSE IF( WANTZ ) THEN * * ==== U is not accumulated, so update Z * . now by multiplying by reflections * . from the right. ==== * DO 140 M = MBOT, MTOP, -1 K = KRCOL + 2*( M-1 ) T1 = V( 1, M ) T2 = T1*V( 2, M ) T3 = T1*V( 3, M ) DO 130 J = ILOZ, IHIZ REFSUM = Z( J, K+1 ) + V( 2, M )*Z( J, K+2 ) $ + V( 3, M )*Z( J, K+3 ) Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1 Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2 Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*T3 130 CONTINUE 140 CONTINUE END IF * * ==== End of near-the-diagonal bulge chase. ==== * 145 CONTINUE * * ==== Use U (if accumulated) to update far-from-diagonal * . entries in H. If required, use U to update Z as * . well. ==== * IF( ACCUM ) THEN IF( WANTT ) THEN JTOP = 1 JBOT = N ELSE JTOP = KTOP JBOT = KBOT END IF K1 = MAX( 1, KTOP-INCOL ) NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1 * * ==== Horizontal Multiply ==== * DO 150 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH JLEN = MIN( NH, JBOT-JCOL+1 ) CALL DGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ), $ LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH, $ LDWH ) CALL DLACPY( 'ALL', NU, JLEN, WH, LDWH, $ H( INCOL+K1, JCOL ), LDH ) 150 CONTINUE * * ==== Vertical multiply ==== * DO 160 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW ) CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE, $ H( JROW, INCOL+K1 ), LDH, U( K1, K1 ), $ LDU, ZERO, WV, LDWV ) CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV, $ H( JROW, INCOL+K1 ), LDH ) 160 CONTINUE * * ==== Z multiply (also vertical) ==== * IF( WANTZ ) THEN DO 170 JROW = ILOZ, IHIZ, NV JLEN = MIN( NV, IHIZ-JROW+1 ) CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE, $ Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ), $ LDU, ZERO, WV, LDWV ) CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV, $ Z( JROW, INCOL+K1 ), LDZ ) 170 CONTINUE END IF END IF 180 CONTINUE * * ==== End of DLAQR5 ==== * END