numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/dlaqsp.f 5719B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
*> \brief \b DLAQSP scales a symmetric/Hermitian matrix in packed storage, using scaling factors computed by sppequ.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLAQSP + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqsp.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqsp.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqsp.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DLAQSP( UPLO, N, AP, S, SCOND, AMAX, EQUED )
*
*       .. Scalar Arguments ..
*       CHARACTER          EQUED, UPLO
*       INTEGER            N
*       DOUBLE PRECISION   AMAX, SCOND
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   AP( * ), S( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DLAQSP equilibrates a symmetric matrix A using the scaling factors
*> in the vector S.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          symmetric matrix A is stored.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
*>          On entry, the upper or lower triangle of the symmetric matrix
*>          A, packed columnwise in a linear array.  The j-th column of A
*>          is stored in the array AP as follows:
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*>
*>          On exit, the equilibrated matrix:  diag(S) * A * diag(S), in
*>          the same storage format as A.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*>          S is DOUBLE PRECISION array, dimension (N)
*>          The scale factors for A.
*> \endverbatim
*>
*> \param[in] SCOND
*> \verbatim
*>          SCOND is DOUBLE PRECISION
*>          Ratio of the smallest S(i) to the largest S(i).
*> \endverbatim
*>
*> \param[in] AMAX
*> \verbatim
*>          AMAX is DOUBLE PRECISION
*>          Absolute value of largest matrix entry.
*> \endverbatim
*>
*> \param[out] EQUED
*> \verbatim
*>          EQUED is CHARACTER*1
*>          Specifies whether or not equilibration was done.
*>          = 'N':  No equilibration.
*>          = 'Y':  Equilibration was done, i.e., A has been replaced by
*>                  diag(S) * A * diag(S).
*> \endverbatim
*
*> \par Internal Parameters:
*  =========================
*>
*> \verbatim
*>  THRESH is a threshold value used to decide if scaling should be done
*>  based on the ratio of the scaling factors.  If SCOND < THRESH,
*>  scaling is done.
*>
*>  LARGE and SMALL are threshold values used to decide if scaling should
*>  be done based on the absolute size of the largest matrix element.
*>  If AMAX > LARGE or AMAX < SMALL, scaling is done.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup laqhp
*
*  =====================================================================
      SUBROUTINE DLAQSP( UPLO, N, AP, S, SCOND, AMAX, EQUED )
*
*  -- LAPACK auxiliary routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          EQUED, UPLO
      INTEGER            N
      DOUBLE PRECISION   AMAX, SCOND
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AP( * ), S( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, THRESH
      PARAMETER          ( ONE = 1.0D+0, THRESH = 0.1D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, JC
      DOUBLE PRECISION   CJ, LARGE, SMALL
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, DLAMCH
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         EQUED = 'N'
         RETURN
      END IF
*
*     Initialize LARGE and SMALL.
*
      SMALL = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
      LARGE = ONE / SMALL
*
      IF( SCOND.GE.THRESH .AND. AMAX.GE.SMALL .AND. AMAX.LE.LARGE ) THEN
*
*        No equilibration
*
         EQUED = 'N'
      ELSE
*
*        Replace A by diag(S) * A * diag(S).
*
         IF( LSAME( UPLO, 'U' ) ) THEN
*
*           Upper triangle of A is stored.
*
            JC = 1
            DO 20 J = 1, N
               CJ = S( J )
               DO 10 I = 1, J
                  AP( JC+I-1 ) = CJ*S( I )*AP( JC+I-1 )
   10          CONTINUE
               JC = JC + J
   20       CONTINUE
         ELSE
*
*           Lower triangle of A is stored.
*
            JC = 1
            DO 40 J = 1, N
               CJ = S( J )
               DO 30 I = J, N
                  AP( JC+I-J ) = CJ*S( I )*AP( JC+I-J )
   30          CONTINUE
               JC = JC + N - J + 1
   40       CONTINUE
         END IF
         EQUED = 'Y'
      END IF
*
      RETURN
*
*     End of DLAQSP
*
      END