numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/dlar2v.f 4145B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
*> \brief \b DLAR2V applies a vector of plane rotations with real cosines and real sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLAR2V + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlar2v.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlar2v.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlar2v.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DLAR2V( N, X, Y, Z, INCX, C, S, INCC )
*
*       .. Scalar Arguments ..
*       INTEGER            INCC, INCX, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   C( * ), S( * ), X( * ), Y( * ), Z( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DLAR2V applies a vector of real plane rotations from both sides to
*> a sequence of 2-by-2 real symmetric matrices, defined by the elements
*> of the vectors x, y and z. For i = 1,2,...,n
*>
*>    ( x(i)  z(i) ) := (  c(i)  s(i) ) ( x(i)  z(i) ) ( c(i) -s(i) )
*>    ( z(i)  y(i) )    ( -s(i)  c(i) ) ( z(i)  y(i) ) ( s(i)  c(i) )
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of plane rotations to be applied.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*>          X is DOUBLE PRECISION array,
*>                         dimension (1+(N-1)*INCX)
*>          The vector x.
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*>          Y is DOUBLE PRECISION array,
*>                         dimension (1+(N-1)*INCX)
*>          The vector y.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*>          Z is DOUBLE PRECISION array,
*>                         dimension (1+(N-1)*INCX)
*>          The vector z.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*>          INCX is INTEGER
*>          The increment between elements of X, Y and Z. INCX > 0.
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*>          C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
*>          The cosines of the plane rotations.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*>          S is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
*>          The sines of the plane rotations.
*> \endverbatim
*>
*> \param[in] INCC
*> \verbatim
*>          INCC is INTEGER
*>          The increment between elements of C and S. INCC > 0.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup lar2v
*
*  =====================================================================
      SUBROUTINE DLAR2V( N, X, Y, Z, INCX, C, S, INCC )
*
*  -- LAPACK auxiliary routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INCC, INCX, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   C( * ), S( * ), X( * ), Y( * ), Z( * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, IC, IX
      DOUBLE PRECISION   CI, SI, T1, T2, T3, T4, T5, T6, XI, YI, ZI
*     ..
*     .. Executable Statements ..
*
      IX = 1
      IC = 1
      DO 10 I = 1, N
         XI = X( IX )
         YI = Y( IX )
         ZI = Z( IX )
         CI = C( IC )
         SI = S( IC )
         T1 = SI*ZI
         T2 = CI*ZI
         T3 = T2 - SI*XI
         T4 = T2 + SI*YI
         T5 = CI*XI + T1
         T6 = CI*YI - T1
         X( IX ) = CI*T5 + SI*T4
         Y( IX ) = CI*T6 - SI*T3
         Z( IX ) = CI*T4 - SI*T5
         IX = IX + INCX
         IC = IC + INCC
   10 CONTINUE
*
*     End of DLAR2V
*
      RETURN
      END