numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/dlarfgp.f 6515B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
*> \brief \b DLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLARFGP + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarfgp.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarfgp.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarfgp.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DLARFGP( N, ALPHA, X, INCX, TAU )
*
*       .. Scalar Arguments ..
*       INTEGER            INCX, N
*       DOUBLE PRECISION   ALPHA, TAU
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   X( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DLARFGP generates a real elementary reflector H of order n, such
*> that
*>
*>       H * ( alpha ) = ( beta ),   H**T * H = I.
*>           (   x   )   (   0  )
*>
*> where alpha and beta are scalars, beta is non-negative, and x is
*> an (n-1)-element real vector.  H is represented in the form
*>
*>       H = I - tau * ( 1 ) * ( 1 v**T ) ,
*>                     ( v )
*>
*> where tau is a real scalar and v is a real (n-1)-element
*> vector.
*>
*> If the elements of x are all zero, then tau = 0 and H is taken to be
*> the unit matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the elementary reflector.
*> \endverbatim
*>
*> \param[in,out] ALPHA
*> \verbatim
*>          ALPHA is DOUBLE PRECISION
*>          On entry, the value alpha.
*>          On exit, it is overwritten with the value beta.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*>          X is DOUBLE PRECISION array, dimension
*>                         (1+(N-2)*abs(INCX))
*>          On entry, the vector x.
*>          On exit, it is overwritten with the vector v.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*>          INCX is INTEGER
*>          The increment between elements of X. INCX > 0.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is DOUBLE PRECISION
*>          The value tau.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup larfgp
*
*  =====================================================================
      SUBROUTINE DLARFGP( N, ALPHA, X, INCX, TAU )
*
*  -- LAPACK auxiliary routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INCX, N
      DOUBLE PRECISION   ALPHA, TAU
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   X( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   TWO, ONE, ZERO
      PARAMETER          ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J, KNT
      DOUBLE PRECISION   BETA, BIGNUM, EPS, SAVEALPHA, SMLNUM, XNORM
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLAPY2, DNRM2
      EXTERNAL           DLAMCH, DLAPY2, DNRM2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSCAL
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.0 ) THEN
         TAU = ZERO
         RETURN
      END IF
*
      EPS = DLAMCH( 'Precision' )
      XNORM = DNRM2( N-1, X, INCX )
*
      IF( XNORM.LE.EPS*ABS(ALPHA) ) THEN
*
*        H  =  [+/-1, 0; I], sign chosen so ALPHA >= 0.
*
         IF( ALPHA.GE.ZERO ) THEN
*           When TAU.eq.ZERO, the vector is special-cased to be
*           all zeros in the application routines.  We do not need
*           to clear it.
            TAU = ZERO
         ELSE
*           However, the application routines rely on explicit
*           zero checks when TAU.ne.ZERO, and we must clear X.
            TAU = TWO
            DO J = 1, N-1
               X( 1 + (J-1)*INCX ) = 0
            END DO
            ALPHA = -ALPHA
         END IF
      ELSE
*
*        general case
*
         BETA = SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
         SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'E' )
         KNT = 0
         IF( ABS( BETA ).LT.SMLNUM ) THEN
*
*           XNORM, BETA may be inaccurate; scale X and recompute them
*
            BIGNUM = ONE / SMLNUM
   10       CONTINUE
            KNT = KNT + 1
            CALL DSCAL( N-1, BIGNUM, X, INCX )
            BETA = BETA*BIGNUM
            ALPHA = ALPHA*BIGNUM
            IF( (ABS( BETA ).LT.SMLNUM) .AND. (KNT .LT. 20) )
     $         GO TO 10
*
*           New BETA is at most 1, at least SMLNUM
*
            XNORM = DNRM2( N-1, X, INCX )
            BETA = SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
         END IF
         SAVEALPHA = ALPHA
         ALPHA = ALPHA + BETA
         IF( BETA.LT.ZERO ) THEN
            BETA = -BETA
            TAU = -ALPHA / BETA
         ELSE
            ALPHA = XNORM * (XNORM/ALPHA)
            TAU = ALPHA / BETA
            ALPHA = -ALPHA
         END IF
*
         IF ( ABS(TAU).LE.SMLNUM ) THEN
*
*           In the case where the computed TAU ends up being a denormalized number,
*           it loses relative accuracy. This is a BIG problem. Solution: flush TAU
*           to ZERO. This explains the next IF statement.
*
*           (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
*           (Thanks Pat. Thanks MathWorks.)
*
            IF( SAVEALPHA.GE.ZERO ) THEN
               TAU = ZERO
            ELSE
               TAU = TWO
               DO J = 1, N-1
                  X( 1 + (J-1)*INCX ) = 0
               END DO
               BETA = -SAVEALPHA
            END IF
*
         ELSE
*
*           This is the general case.
*
            CALL DSCAL( N-1, ONE / ALPHA, X, INCX )
*
         END IF
*
*        If BETA is subnormal, it may lose relative accuracy
*
         DO 20 J = 1, KNT
            BETA = BETA*SMLNUM
 20      CONTINUE
         ALPHA = BETA
      END IF
*
      RETURN
*
*     End of DLARFGP
*
      END