numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dlarra.f | 5941B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
*> \brief \b DLARRA computes the splitting points with the specified threshold. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLARRA + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarra.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarra.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarra.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DLARRA( N, D, E, E2, SPLTOL, TNRM, * NSPLIT, ISPLIT, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, N, NSPLIT * DOUBLE PRECISION SPLTOL, TNRM * .. * .. Array Arguments .. * INTEGER ISPLIT( * ) * DOUBLE PRECISION D( * ), E( * ), E2( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> Compute the splitting points with threshold SPLTOL. *> DLARRA sets any "small" off-diagonal elements to zero. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix. N > 0. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is DOUBLE PRECISION array, dimension (N) *> On entry, the N diagonal elements of the tridiagonal *> matrix T. *> \endverbatim *> *> \param[in,out] E *> \verbatim *> E is DOUBLE PRECISION array, dimension (N) *> On entry, the first (N-1) entries contain the subdiagonal *> elements of the tridiagonal matrix T; E(N) need not be set. *> On exit, the entries E( ISPLIT( I ) ), 1 <= I <= NSPLIT, *> are set to zero, the other entries of E are untouched. *> \endverbatim *> *> \param[in,out] E2 *> \verbatim *> E2 is DOUBLE PRECISION array, dimension (N) *> On entry, the first (N-1) entries contain the SQUARES of the *> subdiagonal elements of the tridiagonal matrix T; *> E2(N) need not be set. *> On exit, the entries E2( ISPLIT( I ) ), *> 1 <= I <= NSPLIT, have been set to zero *> \endverbatim *> *> \param[in] SPLTOL *> \verbatim *> SPLTOL is DOUBLE PRECISION *> The threshold for splitting. Two criteria can be used: *> SPLTOL<0 : criterion based on absolute off-diagonal value *> SPLTOL>0 : criterion that preserves relative accuracy *> \endverbatim *> *> \param[in] TNRM *> \verbatim *> TNRM is DOUBLE PRECISION *> The norm of the matrix. *> \endverbatim *> *> \param[out] NSPLIT *> \verbatim *> NSPLIT is INTEGER *> The number of blocks T splits into. 1 <= NSPLIT <= N. *> \endverbatim *> *> \param[out] ISPLIT *> \verbatim *> ISPLIT is INTEGER array, dimension (N) *> The splitting points, at which T breaks up into blocks. *> The first block consists of rows/columns 1 to ISPLIT(1), *> the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), *> etc., and the NSPLIT-th consists of rows/columns *> ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup larra * *> \par Contributors: * ================== *> *> Beresford Parlett, University of California, Berkeley, USA \n *> Jim Demmel, University of California, Berkeley, USA \n *> Inderjit Dhillon, University of Texas, Austin, USA \n *> Osni Marques, LBNL/NERSC, USA \n *> Christof Voemel, University of California, Berkeley, USA * * ===================================================================== SUBROUTINE DLARRA( N, D, E, E2, SPLTOL, TNRM, $ NSPLIT, ISPLIT, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, N, NSPLIT DOUBLE PRECISION SPLTOL, TNRM * .. * .. Array Arguments .. INTEGER ISPLIT( * ) DOUBLE PRECISION D( * ), E( * ), E2( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) * .. * .. Local Scalars .. INTEGER I DOUBLE PRECISION EABS, TMP1 * .. * .. Intrinsic Functions .. INTRINSIC ABS * .. * .. Executable Statements .. * INFO = 0 NSPLIT = 1 * * Quick return if possible * IF( N.LE.0 ) THEN RETURN END IF * * Compute splitting points IF(SPLTOL.LT.ZERO) THEN * Criterion based on absolute off-diagonal value TMP1 = ABS(SPLTOL)* TNRM DO 9 I = 1, N-1 EABS = ABS( E(I) ) IF( EABS .LE. TMP1) THEN E(I) = ZERO E2(I) = ZERO ISPLIT( NSPLIT ) = I NSPLIT = NSPLIT + 1 END IF 9 CONTINUE ELSE * Criterion that guarantees relative accuracy DO 10 I = 1, N-1 EABS = ABS( E(I) ) IF( EABS .LE. SPLTOL * SQRT(ABS(D(I)))*SQRT(ABS(D(I+1))) ) $ THEN E(I) = ZERO E2(I) = ZERO ISPLIT( NSPLIT ) = I NSPLIT = NSPLIT + 1 END IF 10 CONTINUE ENDIF ISPLIT( NSPLIT ) = N RETURN * * End of DLARRA * END