numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dlarre.f | 32290B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
*> \brief \b DLARRE given the tridiagonal matrix T, sets small off-diagonal elements to zero and for each unreduced block Ti, finds base representations and eigenvalues. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLARRE + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarre.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarre.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarre.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2, * RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M, * W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN, * WORK, IWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER RANGE * INTEGER IL, INFO, IU, M, N, NSPLIT * DOUBLE PRECISION PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU * .. * .. Array Arguments .. * INTEGER IBLOCK( * ), ISPLIT( * ), IWORK( * ), * $ INDEXW( * ) * DOUBLE PRECISION D( * ), E( * ), E2( * ), GERS( * ), * $ W( * ),WERR( * ), WGAP( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> To find the desired eigenvalues of a given real symmetric *> tridiagonal matrix T, DLARRE sets any "small" off-diagonal *> elements to zero, and for each unreduced block T_i, it finds *> (a) a suitable shift at one end of the block's spectrum, *> (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and *> (c) eigenvalues of each L_i D_i L_i^T. *> The representations and eigenvalues found are then used by *> DSTEMR to compute the eigenvectors of T. *> The accuracy varies depending on whether bisection is used to *> find a few eigenvalues or the dqds algorithm (subroutine DLASQ2) to *> compute all and then discard any unwanted one. *> As an added benefit, DLARRE also outputs the n *> Gerschgorin intervals for the matrices L_i D_i L_i^T. *> \endverbatim * * Arguments: * ========== * *> \param[in] RANGE *> \verbatim *> RANGE is CHARACTER*1 *> = 'A': ("All") all eigenvalues will be found. *> = 'V': ("Value") all eigenvalues in the half-open interval *> (VL, VU] will be found. *> = 'I': ("Index") the IL-th through IU-th eigenvalues (of the *> entire matrix) will be found. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix. N > 0. *> \endverbatim *> *> \param[in,out] VL *> \verbatim *> VL is DOUBLE PRECISION *> If RANGE='V', the lower bound for the eigenvalues. *> Eigenvalues less than or equal to VL, or greater than VU, *> will not be returned. VL < VU. *> If RANGE='I' or ='A', DLARRE computes bounds on the desired *> part of the spectrum. *> \endverbatim *> *> \param[in,out] VU *> \verbatim *> VU is DOUBLE PRECISION *> If RANGE='V', the upper bound for the eigenvalues. *> Eigenvalues less than or equal to VL, or greater than VU, *> will not be returned. VL < VU. *> If RANGE='I' or ='A', DLARRE computes bounds on the desired *> part of the spectrum. *> \endverbatim *> *> \param[in] IL *> \verbatim *> IL is INTEGER *> If RANGE='I', the index of the *> smallest eigenvalue to be returned. *> 1 <= IL <= IU <= N. *> \endverbatim *> *> \param[in] IU *> \verbatim *> IU is INTEGER *> If RANGE='I', the index of the *> largest eigenvalue to be returned. *> 1 <= IL <= IU <= N. *> \endverbatim *> *> \param[in,out] D *> \verbatim *> D is DOUBLE PRECISION array, dimension (N) *> On entry, the N diagonal elements of the tridiagonal *> matrix T. *> On exit, the N diagonal elements of the diagonal *> matrices D_i. *> \endverbatim *> *> \param[in,out] E *> \verbatim *> E is DOUBLE PRECISION array, dimension (N) *> On entry, the first (N-1) entries contain the subdiagonal *> elements of the tridiagonal matrix T; E(N) need not be set. *> On exit, E contains the subdiagonal elements of the unit *> bidiagonal matrices L_i. The entries E( ISPLIT( I ) ), *> 1 <= I <= NSPLIT, contain the base points sigma_i on output. *> \endverbatim *> *> \param[in,out] E2 *> \verbatim *> E2 is DOUBLE PRECISION array, dimension (N) *> On entry, the first (N-1) entries contain the SQUARES of the *> subdiagonal elements of the tridiagonal matrix T; *> E2(N) need not be set. *> On exit, the entries E2( ISPLIT( I ) ), *> 1 <= I <= NSPLIT, have been set to zero *> \endverbatim *> *> \param[in] RTOL1 *> \verbatim *> RTOL1 is DOUBLE PRECISION *> \endverbatim *> *> \param[in] RTOL2 *> \verbatim *> RTOL2 is DOUBLE PRECISION *> Parameters for bisection. *> An interval [LEFT,RIGHT] has converged if *> RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) *> \endverbatim *> *> \param[in] SPLTOL *> \verbatim *> SPLTOL is DOUBLE PRECISION *> The threshold for splitting. *> \endverbatim *> *> \param[out] NSPLIT *> \verbatim *> NSPLIT is INTEGER *> The number of blocks T splits into. 1 <= NSPLIT <= N. *> \endverbatim *> *> \param[out] ISPLIT *> \verbatim *> ISPLIT is INTEGER array, dimension (N) *> The splitting points, at which T breaks up into blocks. *> The first block consists of rows/columns 1 to ISPLIT(1), *> the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), *> etc., and the NSPLIT-th consists of rows/columns *> ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. *> \endverbatim *> *> \param[out] M *> \verbatim *> M is INTEGER *> The total number of eigenvalues (of all L_i D_i L_i^T) *> found. *> \endverbatim *> *> \param[out] W *> \verbatim *> W is DOUBLE PRECISION array, dimension (N) *> The first M elements contain the eigenvalues. The *> eigenvalues of each of the blocks, L_i D_i L_i^T, are *> sorted in ascending order ( DLARRE may use the *> remaining N-M elements as workspace). *> \endverbatim *> *> \param[out] WERR *> \verbatim *> WERR is DOUBLE PRECISION array, dimension (N) *> The error bound on the corresponding eigenvalue in W. *> \endverbatim *> *> \param[out] WGAP *> \verbatim *> WGAP is DOUBLE PRECISION array, dimension (N) *> The separation from the right neighbor eigenvalue in W. *> The gap is only with respect to the eigenvalues of the same block *> as each block has its own representation tree. *> Exception: at the right end of a block we store the left gap *> \endverbatim *> *> \param[out] IBLOCK *> \verbatim *> IBLOCK is INTEGER array, dimension (N) *> The indices of the blocks (submatrices) associated with the *> corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue *> W(i) belongs to the first block from the top, =2 if W(i) *> belongs to the second block, etc. *> \endverbatim *> *> \param[out] INDEXW *> \verbatim *> INDEXW is INTEGER array, dimension (N) *> The indices of the eigenvalues within each block (submatrix); *> for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the *> i-th eigenvalue W(i) is the 10-th eigenvalue in block 2 *> \endverbatim *> *> \param[out] GERS *> \verbatim *> GERS is DOUBLE PRECISION array, dimension (2*N) *> The N Gerschgorin intervals (the i-th Gerschgorin interval *> is (GERS(2*i-1), GERS(2*i)). *> \endverbatim *> *> \param[out] PIVMIN *> \verbatim *> PIVMIN is DOUBLE PRECISION *> The minimum pivot in the Sturm sequence for T. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (6*N) *> Workspace. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (5*N) *> Workspace. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> > 0: A problem occurred in DLARRE. *> < 0: One of the called subroutines signaled an internal problem. *> Needs inspection of the corresponding parameter IINFO *> for further information. *> *> =-1: Problem in DLARRD. *> = 2: No base representation could be found in MAXTRY iterations. *> Increasing MAXTRY and recompilation might be a remedy. *> =-3: Problem in DLARRB when computing the refined root *> representation for DLASQ2. *> =-4: Problem in DLARRB when preforming bisection on the *> desired part of the spectrum. *> =-5: Problem in DLASQ2. *> =-6: Problem in DLASQ2. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup larre * *> \par Further Details: * ===================== *> *> \verbatim *> *> The base representations are required to suffer very little *> element growth and consequently define all their eigenvalues to *> high relative accuracy. *> \endverbatim * *> \par Contributors: * ================== *> *> Beresford Parlett, University of California, Berkeley, USA \n *> Jim Demmel, University of California, Berkeley, USA \n *> Inderjit Dhillon, University of Texas, Austin, USA \n *> Osni Marques, LBNL/NERSC, USA \n *> Christof Voemel, University of California, Berkeley, USA \n *> * ===================================================================== SUBROUTINE DLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2, $ RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M, $ W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN, $ WORK, IWORK, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER RANGE INTEGER IL, INFO, IU, M, N, NSPLIT DOUBLE PRECISION PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU * .. * .. Array Arguments .. INTEGER IBLOCK( * ), ISPLIT( * ), IWORK( * ), $ INDEXW( * ) DOUBLE PRECISION D( * ), E( * ), E2( * ), GERS( * ), $ W( * ),WERR( * ), WGAP( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION FAC, FOUR, FOURTH, FUDGE, HALF, HNDRD, $ MAXGROWTH, ONE, PERT, TWO, ZERO PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, $ TWO = 2.0D0, FOUR=4.0D0, $ HNDRD = 100.0D0, $ PERT = 8.0D0, $ HALF = ONE/TWO, FOURTH = ONE/FOUR, FAC= HALF, $ MAXGROWTH = 64.0D0, FUDGE = 2.0D0 ) INTEGER MAXTRY, ALLRNG, INDRNG, VALRNG PARAMETER ( MAXTRY = 6, ALLRNG = 1, INDRNG = 2, $ VALRNG = 3 ) * .. * .. Local Scalars .. LOGICAL FORCEB, NOREP, USEDQD INTEGER CNT, CNT1, CNT2, I, IBEGIN, IDUM, IEND, IINFO, $ IN, INDL, INDU, IRANGE, J, JBLK, MB, MM, $ WBEGIN, WEND DOUBLE PRECISION AVGAP, BSRTOL, CLWDTH, DMAX, DPIVOT, EABS, $ EMAX, EOLD, EPS, GL, GU, ISLEFT, ISRGHT, RTL, $ RTOL, S1, S2, SAFMIN, SGNDEF, SIGMA, SPDIAM, $ TAU, TMP, TMP1 * .. * .. Local Arrays .. INTEGER ISEED( 4 ) * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH, LSAME * .. * .. External Subroutines .. EXTERNAL DCOPY, DLARNV, DLARRA, DLARRB, DLARRC, $ DLARRD, $ DLASQ2, DLARRK * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. * .. Executable Statements .. * INFO = 0 NSPLIT = 0 M = 0 * * Quick return if possible * IF( N.LE.0 ) THEN RETURN END IF * * Decode RANGE * IF( LSAME( RANGE, 'A' ) ) THEN IRANGE = ALLRNG ELSE IF( LSAME( RANGE, 'V' ) ) THEN IRANGE = VALRNG ELSE IF( LSAME( RANGE, 'I' ) ) THEN IRANGE = INDRNG END IF * Get machine constants SAFMIN = DLAMCH( 'S' ) EPS = DLAMCH( 'P' ) * Set parameters RTL = SQRT(EPS) BSRTOL = SQRT(EPS) * Treat case of 1x1 matrix for quick return IF( N.EQ.1 ) THEN IF( (IRANGE.EQ.ALLRNG).OR. $ ((IRANGE.EQ.VALRNG).AND.(D(1).GT.VL).AND.(D(1).LE.VU)).OR. $ ((IRANGE.EQ.INDRNG).AND.(IL.EQ.1).AND.(IU.EQ.1)) ) THEN M = 1 W(1) = D(1) * The computation error of the eigenvalue is zero WERR(1) = ZERO WGAP(1) = ZERO IBLOCK( 1 ) = 1 INDEXW( 1 ) = 1 GERS(1) = D( 1 ) GERS(2) = D( 1 ) ENDIF * store the shift for the initial RRR, which is zero in this case E(1) = ZERO RETURN END IF * General case: tridiagonal matrix of order > 1 * * Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter. * Compute maximum off-diagonal entry and pivmin. GL = D(1) GU = D(1) EOLD = ZERO EMAX = ZERO E(N) = ZERO DO 5 I = 1,N WERR(I) = ZERO WGAP(I) = ZERO EABS = ABS( E(I) ) IF( EABS .GE. EMAX ) THEN EMAX = EABS END IF TMP1 = EABS + EOLD GERS( 2*I-1) = D(I) - TMP1 GL = MIN( GL, GERS( 2*I - 1)) GERS( 2*I ) = D(I) + TMP1 GU = MAX( GU, GERS(2*I) ) EOLD = EABS 5 CONTINUE * The minimum pivot allowed in the Sturm sequence for T PIVMIN = SAFMIN * MAX( ONE, EMAX**2 ) * Compute spectral diameter. The Gerschgorin bounds give an * estimate that is wrong by at most a factor of SQRT(2) SPDIAM = GU - GL * Compute splitting points CALL DLARRA( N, D, E, E2, SPLTOL, SPDIAM, $ NSPLIT, ISPLIT, IINFO ) * Can force use of bisection instead of faster DQDS. * Option left in the code for future multisection work. FORCEB = .FALSE. * Initialize USEDQD, DQDS should be used for ALLRNG unless someone * explicitly wants bisection. USEDQD = (( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB)) IF( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ) THEN * Set interval [VL,VU] that contains all eigenvalues VL = GL VU = GU ELSE * We call DLARRD to find crude approximations to the eigenvalues * in the desired range. In case IRANGE = INDRNG, we also obtain the * interval (VL,VU] that contains all the wanted eigenvalues. * An interval [LEFT,RIGHT] has converged if * RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT)) * DLARRD needs a WORK of size 4*N, IWORK of size 3*N CALL DLARRD( RANGE, 'B', N, VL, VU, IL, IU, GERS, $ BSRTOL, D, E, E2, PIVMIN, NSPLIT, ISPLIT, $ MM, W, WERR, VL, VU, IBLOCK, INDEXW, $ WORK, IWORK, IINFO ) IF( IINFO.NE.0 ) THEN INFO = -1 RETURN ENDIF * Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0 DO 14 I = MM+1,N W( I ) = ZERO WERR( I ) = ZERO IBLOCK( I ) = 0 INDEXW( I ) = 0 14 CONTINUE END IF *** * Loop over unreduced blocks IBEGIN = 1 WBEGIN = 1 DO 170 JBLK = 1, NSPLIT IEND = ISPLIT( JBLK ) IN = IEND - IBEGIN + 1 * 1 X 1 block IF( IN.EQ.1 ) THEN IF( (IRANGE.EQ.ALLRNG).OR.( (IRANGE.EQ.VALRNG).AND. $ ( D( IBEGIN ).GT.VL ).AND.( D( IBEGIN ).LE.VU ) ) $ .OR. ( (IRANGE.EQ.INDRNG).AND.(IBLOCK(WBEGIN).EQ.JBLK)) $ ) THEN M = M + 1 W( M ) = D( IBEGIN ) WERR(M) = ZERO * The gap for a single block doesn't matter for the later * algorithm and is assigned an arbitrary large value WGAP(M) = ZERO IBLOCK( M ) = JBLK INDEXW( M ) = 1 WBEGIN = WBEGIN + 1 ENDIF * E( IEND ) holds the shift for the initial RRR E( IEND ) = ZERO IBEGIN = IEND + 1 GO TO 170 END IF * * Blocks of size larger than 1x1 * * E( IEND ) will hold the shift for the initial RRR, for now set it =0 E( IEND ) = ZERO * * Find local outer bounds GL,GU for the block GL = D(IBEGIN) GU = D(IBEGIN) DO 15 I = IBEGIN , IEND GL = MIN( GERS( 2*I-1 ), GL ) GU = MAX( GERS( 2*I ), GU ) 15 CONTINUE SPDIAM = GU - GL IF(.NOT. ((IRANGE.EQ.ALLRNG).AND.(.NOT.FORCEB)) ) THEN * Count the number of eigenvalues in the current block. MB = 0 DO 20 I = WBEGIN,MM IF( IBLOCK(I).EQ.JBLK ) THEN MB = MB+1 ELSE GOTO 21 ENDIF 20 CONTINUE 21 CONTINUE IF( MB.EQ.0) THEN * No eigenvalue in the current block lies in the desired range * E( IEND ) holds the shift for the initial RRR E( IEND ) = ZERO IBEGIN = IEND + 1 GO TO 170 ELSE * Decide whether dqds or bisection is more efficient USEDQD = ( (MB .GT. FAC*IN) .AND. (.NOT.FORCEB) ) WEND = WBEGIN + MB - 1 * Calculate gaps for the current block * In later stages, when representations for individual * eigenvalues are different, we use SIGMA = E( IEND ). SIGMA = ZERO DO 30 I = WBEGIN, WEND - 1 WGAP( I ) = MAX( ZERO, $ W(I+1)-WERR(I+1) - (W(I)+WERR(I)) ) 30 CONTINUE WGAP( WEND ) = MAX( ZERO, $ VU - SIGMA - (W( WEND )+WERR( WEND ))) * Find local index of the first and last desired evalue. INDL = INDEXW(WBEGIN) INDU = INDEXW( WEND ) ENDIF ENDIF IF(( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ).OR.USEDQD) THEN * Case of DQDS * Find approximations to the extremal eigenvalues of the block CALL DLARRK( IN, 1, GL, GU, D(IBEGIN), $ E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO ) IF( IINFO.NE.0 ) THEN INFO = -1 RETURN ENDIF ISLEFT = MAX(GL, TMP - TMP1 $ - HNDRD * EPS* ABS(TMP - TMP1)) CALL DLARRK( IN, IN, GL, GU, D(IBEGIN), $ E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO ) IF( IINFO.NE.0 ) THEN INFO = -1 RETURN ENDIF ISRGHT = MIN(GU, TMP + TMP1 $ + HNDRD * EPS * ABS(TMP + TMP1)) * Improve the estimate of the spectral diameter SPDIAM = ISRGHT - ISLEFT ELSE * Case of bisection * Find approximations to the wanted extremal eigenvalues ISLEFT = MAX(GL, W(WBEGIN) - WERR(WBEGIN) $ - HNDRD * EPS*ABS(W(WBEGIN)- WERR(WBEGIN) )) ISRGHT = MIN(GU,W(WEND) + WERR(WEND) $ + HNDRD * EPS * ABS(W(WEND)+ WERR(WEND))) ENDIF * Decide whether the base representation for the current block * L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I * should be on the left or the right end of the current block. * The strategy is to shift to the end which is "more populated" * Furthermore, decide whether to use DQDS for the computation of * the eigenvalue approximations at the end of DLARRE or bisection. * dqds is chosen if all eigenvalues are desired or the number of * eigenvalues to be computed is large compared to the blocksize. IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN * If all the eigenvalues have to be computed, we use dqd USEDQD = .TRUE. * INDL is the local index of the first eigenvalue to compute INDL = 1 INDU = IN * MB = number of eigenvalues to compute MB = IN WEND = WBEGIN + MB - 1 * Define 1/4 and 3/4 points of the spectrum S1 = ISLEFT + FOURTH * SPDIAM S2 = ISRGHT - FOURTH * SPDIAM ELSE * DLARRD has computed IBLOCK and INDEXW for each eigenvalue * approximation. * choose sigma IF( USEDQD ) THEN S1 = ISLEFT + FOURTH * SPDIAM S2 = ISRGHT - FOURTH * SPDIAM ELSE TMP = MIN(ISRGHT,VU) - MAX(ISLEFT,VL) S1 = MAX(ISLEFT,VL) + FOURTH * TMP S2 = MIN(ISRGHT,VU) - FOURTH * TMP ENDIF ENDIF * Compute the negcount at the 1/4 and 3/4 points IF(MB.GT.1) THEN CALL DLARRC( 'T', IN, S1, S2, D(IBEGIN), $ E(IBEGIN), PIVMIN, CNT, CNT1, CNT2, IINFO) ENDIF IF(MB.EQ.1) THEN SIGMA = GL SGNDEF = ONE ELSEIF( CNT1 - INDL .GE. INDU - CNT2 ) THEN IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN SIGMA = MAX(ISLEFT,GL) ELSEIF( USEDQD ) THEN * use Gerschgorin bound as shift to get pos def matrix * for dqds SIGMA = ISLEFT ELSE * use approximation of the first desired eigenvalue of the * block as shift SIGMA = MAX(ISLEFT,VL) ENDIF SGNDEF = ONE ELSE IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN SIGMA = MIN(ISRGHT,GU) ELSEIF( USEDQD ) THEN * use Gerschgorin bound as shift to get neg def matrix * for dqds SIGMA = ISRGHT ELSE * use approximation of the first desired eigenvalue of the * block as shift SIGMA = MIN(ISRGHT,VU) ENDIF SGNDEF = -ONE ENDIF * An initial SIGMA has been chosen that will be used for computing * T - SIGMA I = L D L^T * Define the increment TAU of the shift in case the initial shift * needs to be refined to obtain a factorization with not too much * element growth. IF( USEDQD ) THEN * The initial SIGMA was to the outer end of the spectrum * the matrix is definite and we need not retreat. TAU = SPDIAM*EPS*N + TWO*PIVMIN TAU = MAX( TAU,TWO*EPS*ABS(SIGMA) ) ELSE IF(MB.GT.1) THEN CLWDTH = W(WEND) + WERR(WEND) - W(WBEGIN) - WERR(WBEGIN) AVGAP = ABS(CLWDTH / DBLE(WEND-WBEGIN)) IF( SGNDEF.EQ.ONE ) THEN TAU = HALF*MAX(WGAP(WBEGIN),AVGAP) TAU = MAX(TAU,WERR(WBEGIN)) ELSE TAU = HALF*MAX(WGAP(WEND-1),AVGAP) TAU = MAX(TAU,WERR(WEND)) ENDIF ELSE TAU = WERR(WBEGIN) ENDIF ENDIF * DO 80 IDUM = 1, MAXTRY * Compute L D L^T factorization of tridiagonal matrix T - sigma I. * Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of * pivots in WORK(2*IN+1:3*IN) DPIVOT = D( IBEGIN ) - SIGMA WORK( 1 ) = DPIVOT DMAX = ABS( WORK(1) ) J = IBEGIN DO 70 I = 1, IN - 1 WORK( 2*IN+I ) = ONE / WORK( I ) TMP = E( J )*WORK( 2*IN+I ) WORK( IN+I ) = TMP DPIVOT = ( D( J+1 )-SIGMA ) - TMP*E( J ) WORK( I+1 ) = DPIVOT DMAX = MAX( DMAX, ABS(DPIVOT) ) J = J + 1 70 CONTINUE * check for element growth IF( DMAX .GT. MAXGROWTH*SPDIAM ) THEN NOREP = .TRUE. ELSE NOREP = .FALSE. ENDIF IF( USEDQD .AND. .NOT.NOREP ) THEN * Ensure the definiteness of the representation * All entries of D (of L D L^T) must have the same sign DO 71 I = 1, IN TMP = SGNDEF*WORK( I ) IF( TMP.LT.ZERO ) NOREP = .TRUE. 71 CONTINUE ENDIF IF(NOREP) THEN * Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin * shift which makes the matrix definite. So we should end up * here really only in the case of IRANGE = VALRNG or INDRNG. IF( IDUM.EQ.MAXTRY-1 ) THEN IF( SGNDEF.EQ.ONE ) THEN * The fudged Gerschgorin shift should succeed SIGMA = $ GL - FUDGE*SPDIAM*EPS*N - FUDGE*TWO*PIVMIN ELSE SIGMA = $ GU + FUDGE*SPDIAM*EPS*N + FUDGE*TWO*PIVMIN END IF ELSE SIGMA = SIGMA - SGNDEF * TAU TAU = TWO * TAU END IF ELSE * an initial RRR is found GO TO 83 END IF 80 CONTINUE * if the program reaches this point, no base representation could be * found in MAXTRY iterations. INFO = 2 RETURN 83 CONTINUE * At this point, we have found an initial base representation * T - SIGMA I = L D L^T with not too much element growth. * Store the shift. E( IEND ) = SIGMA * Store D and L. CALL DCOPY( IN, WORK, 1, D( IBEGIN ), 1 ) CALL DCOPY( IN-1, WORK( IN+1 ), 1, E( IBEGIN ), 1 ) IF(MB.GT.1 ) THEN * * Perturb each entry of the base representation by a small * (but random) relative amount to overcome difficulties with * glued matrices. * DO 122 I = 1, 4 ISEED( I ) = 1 122 CONTINUE CALL DLARNV(2, ISEED, 2*IN-1, WORK(1)) DO 125 I = 1,IN-1 D(IBEGIN+I-1) = D(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(I)) E(IBEGIN+I-1) = E(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(IN+I)) 125 CONTINUE D(IEND) = D(IEND)*(ONE+EPS*FOUR*WORK(IN)) * ENDIF * * Don't update the Gerschgorin intervals because keeping track * of the updates would be too much work in DLARRV. * We update W instead and use it to locate the proper Gerschgorin * intervals. * Compute the required eigenvalues of L D L' by bisection or dqds IF ( .NOT.USEDQD ) THEN * If DLARRD has been used, shift the eigenvalue approximations * according to their representation. This is necessary for * a uniform DLARRV since dqds computes eigenvalues of the * shifted representation. In DLARRV, W will always hold the * UNshifted eigenvalue approximation. DO 134 J=WBEGIN,WEND W(J) = W(J) - SIGMA WERR(J) = WERR(J) + ABS(W(J)) * EPS 134 CONTINUE * call DLARRB to reduce eigenvalue error of the approximations * from DLARRD DO 135 I = IBEGIN, IEND-1 WORK( I ) = D( I ) * E( I )**2 135 CONTINUE * use bisection to find EV from INDL to INDU CALL DLARRB(IN, D(IBEGIN), WORK(IBEGIN), $ INDL, INDU, RTOL1, RTOL2, INDL-1, $ W(WBEGIN), WGAP(WBEGIN), WERR(WBEGIN), $ WORK( 2*N+1 ), IWORK, PIVMIN, SPDIAM, $ IN, IINFO ) IF( IINFO .NE. 0 ) THEN INFO = -4 RETURN END IF * DLARRB computes all gaps correctly except for the last one * Record distance to VU/GU WGAP( WEND ) = MAX( ZERO, $ ( VU-SIGMA ) - ( W( WEND ) + WERR( WEND ) ) ) DO 138 I = INDL, INDU M = M + 1 IBLOCK(M) = JBLK INDEXW(M) = I 138 CONTINUE ELSE * Call dqds to get all eigs (and then possibly delete unwanted * eigenvalues). * Note that dqds finds the eigenvalues of the L D L^T representation * of T to high relative accuracy. High relative accuracy * might be lost when the shift of the RRR is subtracted to obtain * the eigenvalues of T. However, T is not guaranteed to define its * eigenvalues to high relative accuracy anyway. * Set RTOL to the order of the tolerance used in DLASQ2 * This is an ESTIMATED error, the worst case bound is 4*N*EPS * which is usually too large and requires unnecessary work to be * done by bisection when computing the eigenvectors RTOL = LOG(DBLE(IN)) * FOUR * EPS J = IBEGIN DO 140 I = 1, IN - 1 WORK( 2*I-1 ) = ABS( D( J ) ) WORK( 2*I ) = E( J )*E( J )*WORK( 2*I-1 ) J = J + 1 140 CONTINUE WORK( 2*IN-1 ) = ABS( D( IEND ) ) WORK( 2*IN ) = ZERO CALL DLASQ2( IN, WORK, IINFO ) IF( IINFO .NE. 0 ) THEN * If IINFO = -5 then an index is part of a tight cluster * and should be changed. The index is in IWORK(1) and the * gap is in WORK(N+1) INFO = -5 RETURN ELSE * Test that all eigenvalues are positive as expected DO 149 I = 1, IN IF( WORK( I ).LT.ZERO ) THEN INFO = -6 RETURN ENDIF 149 CONTINUE END IF IF( SGNDEF.GT.ZERO ) THEN DO 150 I = INDL, INDU M = M + 1 W( M ) = WORK( IN-I+1 ) IBLOCK( M ) = JBLK INDEXW( M ) = I 150 CONTINUE ELSE DO 160 I = INDL, INDU M = M + 1 W( M ) = -WORK( I ) IBLOCK( M ) = JBLK INDEXW( M ) = I 160 CONTINUE END IF DO 165 I = M - MB + 1, M * the value of RTOL below should be the tolerance in DLASQ2 WERR( I ) = RTOL * ABS( W(I) ) 165 CONTINUE DO 166 I = M - MB + 1, M - 1 * compute the right gap between the intervals WGAP( I ) = MAX( ZERO, $ W(I+1)-WERR(I+1) - (W(I)+WERR(I)) ) 166 CONTINUE WGAP( M ) = MAX( ZERO, $ ( VU-SIGMA ) - ( W( M ) + WERR( M ) ) ) END IF * proceed with next block IBEGIN = IEND + 1 WBEGIN = WEND + 1 170 CONTINUE * RETURN * * End of DLARRE * END