numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dlasd3.f | 13563B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
*> \brief \b DLASD3 finds all square roots of the roots of the secular equation, as defined by the values in D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLASD3 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd3.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd3.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd3.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2, * LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z, * INFO ) * * .. Scalar Arguments .. * INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR, * $ SQRE * .. * .. Array Arguments .. * INTEGER CTOT( * ), IDXC( * ) * DOUBLE PRECISION D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ), * $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), * $ Z( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLASD3 finds all the square roots of the roots of the secular *> equation, as defined by the values in D and Z. It makes the *> appropriate calls to DLASD4 and then updates the singular *> vectors by matrix multiplication. *> *> DLASD3 is called from DLASD1. *> \endverbatim * * Arguments: * ========== * *> \param[in] NL *> \verbatim *> NL is INTEGER *> The row dimension of the upper block. NL >= 1. *> \endverbatim *> *> \param[in] NR *> \verbatim *> NR is INTEGER *> The row dimension of the lower block. NR >= 1. *> \endverbatim *> *> \param[in] SQRE *> \verbatim *> SQRE is INTEGER *> = 0: the lower block is an NR-by-NR square matrix. *> = 1: the lower block is an NR-by-(NR+1) rectangular matrix. *> *> The bidiagonal matrix has N = NL + NR + 1 rows and *> M = N + SQRE >= N columns. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER *> The size of the secular equation, 1 =< K = < N. *> \endverbatim *> *> \param[out] D *> \verbatim *> D is DOUBLE PRECISION array, dimension(K) *> On exit the square roots of the roots of the secular equation, *> in ascending order. *> \endverbatim *> *> \param[out] Q *> \verbatim *> Q is DOUBLE PRECISION array, dimension (LDQ,K) *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. LDQ >= K. *> \endverbatim *> *> \param[in] DSIGMA *> \verbatim *> DSIGMA is DOUBLE PRECISION array, dimension(K) *> The first K elements of this array contain the old roots *> of the deflated updating problem. These are the poles *> of the secular equation. *> \endverbatim *> *> \param[out] U *> \verbatim *> U is DOUBLE PRECISION array, dimension (LDU, N) *> The last N - K columns of this matrix contain the deflated *> left singular vectors. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of the array U. LDU >= N. *> \endverbatim *> *> \param[in] U2 *> \verbatim *> U2 is DOUBLE PRECISION array, dimension (LDU2, N) *> The first K columns of this matrix contain the non-deflated *> left singular vectors for the split problem. *> \endverbatim *> *> \param[in] LDU2 *> \verbatim *> LDU2 is INTEGER *> The leading dimension of the array U2. LDU2 >= N. *> \endverbatim *> *> \param[out] VT *> \verbatim *> VT is DOUBLE PRECISION array, dimension (LDVT, M) *> The last M - K columns of VT**T contain the deflated *> right singular vectors. *> \endverbatim *> *> \param[in] LDVT *> \verbatim *> LDVT is INTEGER *> The leading dimension of the array VT. LDVT >= N. *> \endverbatim *> *> \param[in,out] VT2 *> \verbatim *> VT2 is DOUBLE PRECISION array, dimension (LDVT2, N) *> The first K columns of VT2**T contain the non-deflated *> right singular vectors for the split problem. *> \endverbatim *> *> \param[in] LDVT2 *> \verbatim *> LDVT2 is INTEGER *> The leading dimension of the array VT2. LDVT2 >= N. *> \endverbatim *> *> \param[in] IDXC *> \verbatim *> IDXC is INTEGER array, dimension ( N ) *> The permutation used to arrange the columns of U (and rows of *> VT) into three groups: the first group contains non-zero *> entries only at and above (or before) NL +1; the second *> contains non-zero entries only at and below (or after) NL+2; *> and the third is dense. The first column of U and the row of *> VT are treated separately, however. *> *> The rows of the singular vectors found by DLASD4 *> must be likewise permuted before the matrix multiplies can *> take place. *> \endverbatim *> *> \param[in] CTOT *> \verbatim *> CTOT is INTEGER array, dimension ( 4 ) *> A count of the total number of the various types of columns *> in U (or rows in VT), as described in IDXC. The fourth column *> type is any column which has been deflated. *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is DOUBLE PRECISION array, dimension (K) *> The first K elements of this array contain the components *> of the deflation-adjusted updating row vector. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: if INFO = 1, a singular value did not converge *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup lasd3 * *> \par Contributors: * ================== *> *> Ming Gu and Huan Ren, Computer Science Division, University of *> California at Berkeley, USA *> * ===================================================================== SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, $ U2, $ LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z, $ INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR, $ SQRE * .. * .. Array Arguments .. INTEGER CTOT( * ), IDXC( * ) DOUBLE PRECISION D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ), $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), $ Z( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO, NEGONE PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0, $ NEGONE = -1.0D+0 ) * .. * .. Local Scalars .. INTEGER CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1 DOUBLE PRECISION RHO, TEMP * .. * .. External Functions .. DOUBLE PRECISION DNRM2 EXTERNAL DNRM2 * .. * .. External Subroutines .. EXTERNAL DCOPY, DGEMM, DLACPY, DLASCL, DLASD4, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, SIGN, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * IF( NL.LT.1 ) THEN INFO = -1 ELSE IF( NR.LT.1 ) THEN INFO = -2 ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN INFO = -3 END IF * N = NL + NR + 1 M = N + SQRE NLP1 = NL + 1 NLP2 = NL + 2 * IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN INFO = -4 ELSE IF( LDQ.LT.K ) THEN INFO = -7 ELSE IF( LDU.LT.N ) THEN INFO = -10 ELSE IF( LDU2.LT.N ) THEN INFO = -12 ELSE IF( LDVT.LT.M ) THEN INFO = -14 ELSE IF( LDVT2.LT.M ) THEN INFO = -16 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLASD3', -INFO ) RETURN END IF * * Quick return if possible * IF( K.EQ.1 ) THEN D( 1 ) = ABS( Z( 1 ) ) CALL DCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT ) IF( Z( 1 ).GT.ZERO ) THEN CALL DCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 ) ELSE DO 10 I = 1, N U( I, 1 ) = -U2( I, 1 ) 10 CONTINUE END IF RETURN END IF * * Keep a copy of Z. * CALL DCOPY( K, Z, 1, Q, 1 ) * * Normalize Z. * RHO = DNRM2( K, Z, 1 ) CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO ) RHO = RHO*RHO * * Find the new singular values. * DO 30 J = 1, K CALL DLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ), $ VT( 1, J ), INFO ) * * If the zero finder fails, report the convergence failure. * IF( INFO.NE.0 ) THEN RETURN END IF 30 CONTINUE * * Compute updated Z. * DO 60 I = 1, K Z( I ) = U( I, K )*VT( I, K ) DO 40 J = 1, I - 1 Z( I ) = Z( I )*( U( I, J )*VT( I, J ) / $ ( DSIGMA( I )-DSIGMA( J ) ) / $ ( DSIGMA( I )+DSIGMA( J ) ) ) 40 CONTINUE DO 50 J = I, K - 1 Z( I ) = Z( I )*( U( I, J )*VT( I, J ) / $ ( DSIGMA( I )-DSIGMA( J+1 ) ) / $ ( DSIGMA( I )+DSIGMA( J+1 ) ) ) 50 CONTINUE Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) ) 60 CONTINUE * * Compute left singular vectors of the modified diagonal matrix, * and store related information for the right singular vectors. * DO 90 I = 1, K VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I ) U( 1, I ) = NEGONE DO 70 J = 2, K VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I ) U( J, I ) = DSIGMA( J )*VT( J, I ) 70 CONTINUE TEMP = DNRM2( K, U( 1, I ), 1 ) Q( 1, I ) = U( 1, I ) / TEMP DO 80 J = 2, K JC = IDXC( J ) Q( J, I ) = U( JC, I ) / TEMP 80 CONTINUE 90 CONTINUE * * Update the left singular vector matrix. * IF( K.EQ.2 ) THEN CALL DGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, $ U, $ LDU ) GO TO 100 END IF IF( CTOT( 1 ).GT.0 ) THEN CALL DGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), $ LDU2, $ Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU ) IF( CTOT( 3 ).GT.0 ) THEN KTEMP = 2 + CTOT( 1 ) + CTOT( 2 ) CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, $ KTEMP ), $ LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU ) END IF ELSE IF( CTOT( 3 ).GT.0 ) THEN KTEMP = 2 + CTOT( 1 ) + CTOT( 2 ) CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ), $ LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU ) ELSE CALL DLACPY( 'F', NL, K, U2, LDU2, U, LDU ) END IF CALL DCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU ) KTEMP = 2 + CTOT( 1 ) CTEMP = CTOT( 2 ) + CTOT( 3 ) CALL DGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), $ LDU2, $ Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU ) * * Generate the right singular vectors. * 100 CONTINUE DO 120 I = 1, K TEMP = DNRM2( K, VT( 1, I ), 1 ) Q( I, 1 ) = VT( 1, I ) / TEMP DO 110 J = 2, K JC = IDXC( J ) Q( I, J ) = VT( JC, I ) / TEMP 110 CONTINUE 120 CONTINUE * * Update the right singular vector matrix. * IF( K.EQ.2 ) THEN CALL DGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, $ ZERO, $ VT, LDVT ) RETURN END IF KTEMP = 1 + CTOT( 1 ) CALL DGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ, $ VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT ) KTEMP = 2 + CTOT( 1 ) + CTOT( 2 ) IF( KTEMP.LE.LDVT2 ) $ CALL DGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, $ KTEMP ), $ LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ), $ LDVT ) * KTEMP = CTOT( 1 ) + 1 NRP1 = NR + SQRE IF( KTEMP.GT.1 ) THEN DO 130 I = 1, K Q( I, KTEMP ) = Q( I, 1 ) 130 CONTINUE DO 140 I = NLP2, M VT2( KTEMP, I ) = VT2( 1, I ) 140 CONTINUE END IF CTEMP = 1 + CTOT( 2 ) + CTOT( 3 ) CALL DGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ, $ VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT ) * RETURN * * End of DLASD3 * END