numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dlasda.f | 17887B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
*> \brief \b DLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLASDA + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasda.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasda.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasda.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K, * DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, * PERM, GIVNUM, C, S, WORK, IWORK, INFO ) * * .. Scalar Arguments .. * INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE * .. * .. Array Arguments .. * INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), * $ K( * ), PERM( LDGCOL, * ) * DOUBLE PRECISION C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ), * $ E( * ), GIVNUM( LDU, * ), POLES( LDU, * ), * $ S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ), * $ Z( LDU, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> Using a divide and conquer approach, DLASDA computes the singular *> value decomposition (SVD) of a real upper bidiagonal N-by-M matrix *> B with diagonal D and offdiagonal E, where M = N + SQRE. The *> algorithm computes the singular values in the SVD B = U * S * VT. *> The orthogonal matrices U and VT are optionally computed in *> compact form. *> *> A related subroutine, DLASD0, computes the singular values and *> the singular vectors in explicit form. *> \endverbatim * * Arguments: * ========== * *> \param[in] ICOMPQ *> \verbatim *> ICOMPQ is INTEGER *> Specifies whether singular vectors are to be computed *> in compact form, as follows *> = 0: Compute singular values only. *> = 1: Compute singular vectors of upper bidiagonal *> matrix in compact form. *> \endverbatim *> *> \param[in] SMLSIZ *> \verbatim *> SMLSIZ is INTEGER *> The maximum size of the subproblems at the bottom of the *> computation tree. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The row dimension of the upper bidiagonal matrix. This is *> also the dimension of the main diagonal array D. *> \endverbatim *> *> \param[in] SQRE *> \verbatim *> SQRE is INTEGER *> Specifies the column dimension of the bidiagonal matrix. *> = 0: The bidiagonal matrix has column dimension M = N; *> = 1: The bidiagonal matrix has column dimension M = N + 1. *> \endverbatim *> *> \param[in,out] D *> \verbatim *> D is DOUBLE PRECISION array, dimension ( N ) *> On entry D contains the main diagonal of the bidiagonal *> matrix. On exit D, if INFO = 0, contains its singular values. *> \endverbatim *> *> \param[in] E *> \verbatim *> E is DOUBLE PRECISION array, dimension ( M-1 ) *> Contains the subdiagonal entries of the bidiagonal matrix. *> On exit, E has been destroyed. *> \endverbatim *> *> \param[out] U *> \verbatim *> U is DOUBLE PRECISION array, *> dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced *> if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left *> singular vector matrices of all subproblems at the bottom *> level. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER, LDU = > N. *> The leading dimension of arrays U, VT, DIFL, DIFR, POLES, *> GIVNUM, and Z. *> \endverbatim *> *> \param[out] VT *> \verbatim *> VT is DOUBLE PRECISION array, *> dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced *> if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right *> singular vector matrices of all subproblems at the bottom *> level. *> \endverbatim *> *> \param[out] K *> \verbatim *> K is INTEGER array, *> dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. *> If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th *> secular equation on the computation tree. *> \endverbatim *> *> \param[out] DIFL *> \verbatim *> DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ), *> where NLVL = floor(log_2 (N/SMLSIZ))). *> \endverbatim *> *> \param[out] DIFR *> \verbatim *> DIFR is DOUBLE PRECISION array, *> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and *> dimension ( N ) if ICOMPQ = 0. *> If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) *> record distances between singular values on the I-th *> level and singular values on the (I -1)-th level, and *> DIFR(1:N, 2 * I ) contains the normalizing factors for *> the right singular vector matrix. See DLASD8 for details. *> \endverbatim *> *> \param[out] Z *> \verbatim *> Z is DOUBLE PRECISION array, *> dimension ( LDU, NLVL ) if ICOMPQ = 1 and *> dimension ( N ) if ICOMPQ = 0. *> The first K elements of Z(1, I) contain the components of *> the deflation-adjusted updating row vector for subproblems *> on the I-th level. *> \endverbatim *> *> \param[out] POLES *> \verbatim *> POLES is DOUBLE PRECISION array, *> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced *> if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and *> POLES(1, 2*I) contain the new and old singular values *> involved in the secular equations on the I-th level. *> \endverbatim *> *> \param[out] GIVPTR *> \verbatim *> GIVPTR is INTEGER array, *> dimension ( N ) if ICOMPQ = 1, and not referenced if *> ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records *> the number of Givens rotations performed on the I-th *> problem on the computation tree. *> \endverbatim *> *> \param[out] GIVCOL *> \verbatim *> GIVCOL is INTEGER array, *> dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not *> referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, *> GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations *> of Givens rotations performed on the I-th level on the *> computation tree. *> \endverbatim *> *> \param[in] LDGCOL *> \verbatim *> LDGCOL is INTEGER, LDGCOL = > N. *> The leading dimension of arrays GIVCOL and PERM. *> \endverbatim *> *> \param[out] PERM *> \verbatim *> PERM is INTEGER array, *> dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced *> if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records *> permutations done on the I-th level of the computation tree. *> \endverbatim *> *> \param[out] GIVNUM *> \verbatim *> GIVNUM is DOUBLE PRECISION array, *> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not *> referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, *> GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- *> values of Givens rotations performed on the I-th level on *> the computation tree. *> \endverbatim *> *> \param[out] C *> \verbatim *> C is DOUBLE PRECISION array, *> dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. *> If ICOMPQ = 1 and the I-th subproblem is not square, on exit, *> C( I ) contains the C-value of a Givens rotation related to *> the right null space of the I-th subproblem. *> \endverbatim *> *> \param[out] S *> \verbatim *> S is DOUBLE PRECISION array, dimension ( N ) if *> ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 *> and the I-th subproblem is not square, on exit, S( I ) *> contains the S-value of a Givens rotation related to *> the right null space of the I-th subproblem. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension *> (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (7*N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: if INFO = 1, a singular value did not converge *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup lasda * *> \par Contributors: * ================== *> *> Ming Gu and Huan Ren, Computer Science Division, University of *> California at Berkeley, USA *> * ===================================================================== SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, $ K, $ DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, $ PERM, GIVNUM, C, S, WORK, IWORK, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE * .. * .. Array Arguments .. INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), $ K( * ), PERM( LDGCOL, * ) DOUBLE PRECISION C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ), $ E( * ), GIVNUM( LDU, * ), POLES( LDU, * ), $ S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ), $ Z( LDU, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. INTEGER I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK, $ J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML, $ NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU, $ NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI DOUBLE PRECISION ALPHA, BETA * .. * .. External Subroutines .. EXTERNAL DCOPY, DLASD6, DLASDQ, DLASDT, DLASET, $ XERBLA * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN INFO = -1 ELSE IF( SMLSIZ.LT.3 ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN INFO = -4 ELSE IF( LDU.LT.( N+SQRE ) ) THEN INFO = -8 ELSE IF( LDGCOL.LT.N ) THEN INFO = -17 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLASDA', -INFO ) RETURN END IF * M = N + SQRE * * If the input matrix is too small, call DLASDQ to find the SVD. * IF( N.LE.SMLSIZ ) THEN IF( ICOMPQ.EQ.0 ) THEN CALL DLASDQ( 'U', SQRE, N, 0, 0, 0, D, E, VT, LDU, U, $ LDU, $ U, LDU, WORK, INFO ) ELSE CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, $ LDU, $ U, LDU, WORK, INFO ) END IF RETURN END IF * * Book-keeping and set up the computation tree. * INODE = 1 NDIML = INODE + N NDIMR = NDIML + N IDXQ = NDIMR + N IWK = IDXQ + N * NCC = 0 NRU = 0 * SMLSZP = SMLSIZ + 1 VF = 1 VL = VF + M NWORK1 = VL + M NWORK2 = NWORK1 + SMLSZP*SMLSZP * CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ), $ IWORK( NDIMR ), SMLSIZ ) * * for the nodes on bottom level of the tree, solve * their subproblems by DLASDQ. * NDB1 = ( ND+1 ) / 2 DO 30 I = NDB1, ND * * IC : center row of each node * NL : number of rows of left subproblem * NR : number of rows of right subproblem * NLF: starting row of the left subproblem * NRF: starting row of the right subproblem * I1 = I - 1 IC = IWORK( INODE+I1 ) NL = IWORK( NDIML+I1 ) NLP1 = NL + 1 NR = IWORK( NDIMR+I1 ) NLF = IC - NL NRF = IC + 1 IDXQI = IDXQ + NLF - 2 VFI = VF + NLF - 1 VLI = VL + NLF - 1 SQREI = 1 IF( ICOMPQ.EQ.0 ) THEN CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ), $ SMLSZP ) CALL DLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ), $ E( NLF ), WORK( NWORK1 ), SMLSZP, $ WORK( NWORK2 ), NL, WORK( NWORK2 ), NL, $ WORK( NWORK2 ), INFO ) ITEMP = NWORK1 + NL*SMLSZP CALL DCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 ) CALL DCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 ) ELSE CALL DLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU ) CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), $ LDU ) CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), $ E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU, $ U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO ) CALL DCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 ) CALL DCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 ) END IF IF( INFO.NE.0 ) THEN RETURN END IF DO 10 J = 1, NL IWORK( IDXQI+J ) = J 10 CONTINUE IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN SQREI = 0 ELSE SQREI = 1 END IF IDXQI = IDXQI + NLP1 VFI = VFI + NLP1 VLI = VLI + NLP1 NRP1 = NR + SQREI IF( ICOMPQ.EQ.0 ) THEN CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ), $ SMLSZP ) CALL DLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ), $ E( NRF ), WORK( NWORK1 ), SMLSZP, $ WORK( NWORK2 ), NR, WORK( NWORK2 ), NR, $ WORK( NWORK2 ), INFO ) ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP CALL DCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 ) CALL DCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 ) ELSE CALL DLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU ) CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), $ LDU ) CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), $ E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU, $ U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO ) CALL DCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 ) CALL DCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 ) END IF IF( INFO.NE.0 ) THEN RETURN END IF DO 20 J = 1, NR IWORK( IDXQI+J ) = J 20 CONTINUE 30 CONTINUE * * Now conquer each subproblem bottom-up. * J = 2**NLVL DO 50 LVL = NLVL, 1, -1 LVL2 = LVL*2 - 1 * * Find the first node LF and last node LL on * the current level LVL. * IF( LVL.EQ.1 ) THEN LF = 1 LL = 1 ELSE LF = 2**( LVL-1 ) LL = 2*LF - 1 END IF DO 40 I = LF, LL IM1 = I - 1 IC = IWORK( INODE+IM1 ) NL = IWORK( NDIML+IM1 ) NR = IWORK( NDIMR+IM1 ) NLF = IC - NL NRF = IC + 1 IF( I.EQ.LL ) THEN SQREI = SQRE ELSE SQREI = 1 END IF VFI = VF + NLF - 1 VLI = VL + NLF - 1 IDXQI = IDXQ + NLF - 1 ALPHA = D( IC ) BETA = E( IC ) IF( ICOMPQ.EQ.0 ) THEN CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ), $ WORK( VFI ), WORK( VLI ), ALPHA, BETA, $ IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL, $ LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z, $ K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ), $ IWORK( IWK ), INFO ) ELSE J = J - 1 CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ), $ WORK( VFI ), WORK( VLI ), ALPHA, BETA, $ IWORK( IDXQI ), PERM( NLF, LVL ), $ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL, $ GIVNUM( NLF, LVL2 ), LDU, $ POLES( NLF, LVL2 ), DIFL( NLF, LVL ), $ DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ), $ C( J ), S( J ), WORK( NWORK1 ), $ IWORK( IWK ), INFO ) END IF IF( INFO.NE.0 ) THEN RETURN END IF 40 CONTINUE 50 CONTINUE * RETURN * * End of DLASDA * END