numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dlasq2.f | 17126B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
*> \brief \b DLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLASQ2 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasq2.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasq2.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasq2.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DLASQ2( N, Z, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, N * .. * .. Array Arguments .. * DOUBLE PRECISION Z( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLASQ2 computes all the eigenvalues of the symmetric positive *> definite tridiagonal matrix associated with the qd array Z to high *> relative accuracy are computed to high relative accuracy, in the *> absence of denormalization, underflow and overflow. *> *> To see the relation of Z to the tridiagonal matrix, let L be a *> unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and *> let U be an upper bidiagonal matrix with 1's above and diagonal *> Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the *> symmetric tridiagonal to which it is similar. *> *> Note : DLASQ2 defines a logical variable, IEEE, which is true *> on machines which follow ieee-754 floating-point standard in their *> handling of infinities and NaNs, and false otherwise. This variable *> is passed to DLASQ3. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows and columns in the matrix. N >= 0. *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is DOUBLE PRECISION array, dimension ( 4*N ) *> On entry Z holds the qd array. On exit, entries 1 to N hold *> the eigenvalues in decreasing order, Z( 2*N+1 ) holds the *> trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If *> N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) *> holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of *> shifts that failed. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if the i-th argument is a scalar and had an illegal *> value, then INFO = -i, if the i-th argument is an *> array and the j-entry had an illegal value, then *> INFO = -(i*100+j) *> > 0: the algorithm failed *> = 1, a split was marked by a positive value in E *> = 2, current block of Z not diagonalized after 100*N *> iterations (in inner while loop). On exit Z holds *> a qd array with the same eigenvalues as the given Z. *> = 3, termination criterion of outer while loop not met *> (program created more than N unreduced blocks) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup lasq2 * *> \par Further Details: * ===================== *> *> \verbatim *> *> Local Variables: I0:N0 defines a current unreduced segment of Z. *> The shifts are accumulated in SIGMA. Iteration count is in ITER. *> Ping-pong is controlled by PP (alternates between 0 and 1). *> \endverbatim *> * ===================================================================== SUBROUTINE DLASQ2( N, Z, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, N * .. * .. Array Arguments .. DOUBLE PRECISION Z( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION CBIAS PARAMETER ( CBIAS = 1.50D0 ) DOUBLE PRECISION ZERO, HALF, ONE, TWO, FOUR, HUNDRD PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0, $ TWO = 2.0D0, FOUR = 4.0D0, HUNDRD = 100.0D0 ) * .. * .. Local Scalars .. LOGICAL IEEE INTEGER I0, I1, I4, IINFO, IPN4, ITER, IWHILA, IWHILB, $ K, KMIN, N0, N1, NBIG, NDIV, NFAIL, PP, SPLT, $ TTYPE DOUBLE PRECISION D, DEE, DEEMIN, DESIG, DMIN, DMIN1, DMIN2, DN, $ DN1, DN2, E, EMAX, EMIN, EPS, G, OLDEMN, QMAX, $ QMIN, S, SAFMIN, SIGMA, T, TAU, TEMP, TOL, $ TOL2, TRACE, ZMAX, TEMPE, TEMPQ * .. * .. External Subroutines .. EXTERNAL DLASQ3, DLASRT, XERBLA * .. * .. External Functions .. INTEGER ILAENV DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH, ILAENV * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN, SQRT * .. * .. Executable Statements .. * * Test the input arguments. * (in case DLASQ2 is not called by DLASQ1) * INFO = 0 EPS = DLAMCH( 'Precision' ) SAFMIN = DLAMCH( 'Safe minimum' ) TOL = EPS*HUNDRD TOL2 = TOL**2 * IF( N.LT.0 ) THEN INFO = -1 CALL XERBLA( 'DLASQ2', 1 ) RETURN ELSE IF( N.EQ.0 ) THEN RETURN ELSE IF( N.EQ.1 ) THEN * * 1-by-1 case. * IF( Z( 1 ).LT.ZERO ) THEN INFO = -201 CALL XERBLA( 'DLASQ2', 2 ) END IF RETURN ELSE IF( N.EQ.2 ) THEN * * 2-by-2 case. * IF( Z( 1 ).LT.ZERO ) THEN INFO = -201 CALL XERBLA( 'DLASQ2', 2 ) RETURN ELSE IF( Z( 2 ).LT.ZERO ) THEN INFO = -202 CALL XERBLA( 'DLASQ2', 2 ) RETURN ELSE IF( Z( 3 ).LT.ZERO ) THEN INFO = -203 CALL XERBLA( 'DLASQ2', 2 ) RETURN ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN D = Z( 3 ) Z( 3 ) = Z( 1 ) Z( 1 ) = D END IF Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 ) IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) ) S = Z( 3 )*( Z( 2 ) / T ) IF( S.LE.T ) THEN S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+S / T ) ) ) ) ELSE S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) ) END IF T = Z( 1 ) + ( S+Z( 2 ) ) Z( 3 ) = Z( 3 )*( Z( 1 ) / T ) Z( 1 ) = T END IF Z( 2 ) = Z( 3 ) Z( 6 ) = Z( 2 ) + Z( 1 ) RETURN END IF * * Check for negative data and compute sums of q's and e's. * Z( 2*N ) = ZERO EMIN = Z( 2 ) QMAX = ZERO ZMAX = ZERO D = ZERO E = ZERO * DO 10 K = 1, 2*( N-1 ), 2 IF( Z( K ).LT.ZERO ) THEN INFO = -( 200+K ) CALL XERBLA( 'DLASQ2', 2 ) RETURN ELSE IF( Z( K+1 ).LT.ZERO ) THEN INFO = -( 200+K+1 ) CALL XERBLA( 'DLASQ2', 2 ) RETURN END IF D = D + Z( K ) E = E + Z( K+1 ) QMAX = MAX( QMAX, Z( K ) ) EMIN = MIN( EMIN, Z( K+1 ) ) ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) ) 10 CONTINUE IF( Z( 2*N-1 ).LT.ZERO ) THEN INFO = -( 200+2*N-1 ) CALL XERBLA( 'DLASQ2', 2 ) RETURN END IF D = D + Z( 2*N-1 ) QMAX = MAX( QMAX, Z( 2*N-1 ) ) ZMAX = MAX( QMAX, ZMAX ) * * Check for diagonality. * IF( E.EQ.ZERO ) THEN DO 20 K = 2, N Z( K ) = Z( 2*K-1 ) 20 CONTINUE CALL DLASRT( 'D', N, Z, IINFO ) Z( 2*N-1 ) = D RETURN END IF * TRACE = D + E * * Check for zero data. * IF( TRACE.EQ.ZERO ) THEN Z( 2*N-1 ) = ZERO RETURN END IF * * Check whether the machine is IEEE conformable. * IEEE = ( ILAENV( 10, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 ) * * Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). * DO 30 K = 2*N, 2, -2 Z( 2*K ) = ZERO Z( 2*K-1 ) = Z( K ) Z( 2*K-2 ) = ZERO Z( 2*K-3 ) = Z( K-1 ) 30 CONTINUE * I0 = 1 N0 = N * * Reverse the qd-array, if warranted. * IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN IPN4 = 4*( I0+N0 ) DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4 TEMP = Z( I4-3 ) Z( I4-3 ) = Z( IPN4-I4-3 ) Z( IPN4-I4-3 ) = TEMP TEMP = Z( I4-1 ) Z( I4-1 ) = Z( IPN4-I4-5 ) Z( IPN4-I4-5 ) = TEMP 40 CONTINUE END IF * * Initial split checking via dqd and Li's test. * PP = 0 * DO 80 K = 1, 2 * D = Z( 4*N0+PP-3 ) DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4 IF( Z( I4-1 ).LE.TOL2*D ) THEN Z( I4-1 ) = -ZERO D = Z( I4-3 ) ELSE D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) ) END IF 50 CONTINUE * * dqd maps Z to ZZ plus Li's test. * EMIN = Z( 4*I0+PP+1 ) D = Z( 4*I0+PP-3 ) DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4 Z( I4-2*PP-2 ) = D + Z( I4-1 ) IF( Z( I4-1 ).LE.TOL2*D ) THEN Z( I4-1 ) = -ZERO Z( I4-2*PP-2 ) = D Z( I4-2*PP ) = ZERO D = Z( I4+1 ) ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND. $ SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN TEMP = Z( I4+1 ) / Z( I4-2*PP-2 ) Z( I4-2*PP ) = Z( I4-1 )*TEMP D = D*TEMP ELSE Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) ) D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) ) END IF EMIN = MIN( EMIN, Z( I4-2*PP ) ) 60 CONTINUE Z( 4*N0-PP-2 ) = D * * Now find qmax. * QMAX = Z( 4*I0-PP-2 ) DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4 QMAX = MAX( QMAX, Z( I4 ) ) 70 CONTINUE * * Prepare for the next iteration on K. * PP = 1 - PP 80 CONTINUE * * Initialise variables to pass to DLASQ3. * TTYPE = 0 DMIN1 = ZERO DMIN2 = ZERO DN = ZERO DN1 = ZERO DN2 = ZERO G = ZERO TAU = ZERO * ITER = 2 NFAIL = 0 NDIV = 2*( N0-I0 ) * DO 160 IWHILA = 1, N + 1 IF( N0.LT.1 ) $ GO TO 170 * * While array unfinished do * * E(N0) holds the value of SIGMA when submatrix in I0:N0 * splits from the rest of the array, but is negated. * DESIG = ZERO IF( N0.EQ.N ) THEN SIGMA = ZERO ELSE SIGMA = -Z( 4*N0-1 ) END IF IF( SIGMA.LT.ZERO ) THEN INFO = 1 RETURN END IF * * Find last unreduced submatrix's top index I0, find QMAX and * EMIN. Find Gershgorin-type bound if Q's much greater than E's. * EMAX = ZERO IF( N0.GT.I0 ) THEN EMIN = ABS( Z( 4*N0-5 ) ) ELSE EMIN = ZERO END IF QMIN = Z( 4*N0-3 ) QMAX = QMIN DO 90 I4 = 4*N0, 8, -4 IF( Z( I4-5 ).LE.ZERO ) $ GO TO 100 IF( QMIN.GE.FOUR*EMAX ) THEN QMIN = MIN( QMIN, Z( I4-3 ) ) EMAX = MAX( EMAX, Z( I4-5 ) ) END IF QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) ) EMIN = MIN( EMIN, Z( I4-5 ) ) 90 CONTINUE I4 = 4 * 100 CONTINUE I0 = I4 / 4 PP = 0 * IF( N0-I0.GT.1 ) THEN DEE = Z( 4*I0-3 ) DEEMIN = DEE KMIN = I0 DO 110 I4 = 4*I0+1, 4*N0-3, 4 DEE = Z( I4 )*( DEE /( DEE+Z( I4-2 ) ) ) IF( DEE.LE.DEEMIN ) THEN DEEMIN = DEE KMIN = ( I4+3 )/4 END IF 110 CONTINUE IF( (KMIN-I0)*2.LT.N0-KMIN .AND. $ DEEMIN.LE.HALF*Z(4*N0-3) ) THEN IPN4 = 4*( I0+N0 ) PP = 2 DO 120 I4 = 4*I0, 2*( I0+N0-1 ), 4 TEMP = Z( I4-3 ) Z( I4-3 ) = Z( IPN4-I4-3 ) Z( IPN4-I4-3 ) = TEMP TEMP = Z( I4-2 ) Z( I4-2 ) = Z( IPN4-I4-2 ) Z( IPN4-I4-2 ) = TEMP TEMP = Z( I4-1 ) Z( I4-1 ) = Z( IPN4-I4-5 ) Z( IPN4-I4-5 ) = TEMP TEMP = Z( I4 ) Z( I4 ) = Z( IPN4-I4-4 ) Z( IPN4-I4-4 ) = TEMP 120 CONTINUE END IF END IF * * Put -(initial shift) into DMIN. * DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) ) * * Now I0:N0 is unreduced. * PP = 0 for ping, PP = 1 for pong. * PP = 2 indicates that flipping was applied to the Z array and * and that the tests for deflation upon entry in DLASQ3 * should not be performed. * NBIG = 100*( N0-I0+1 ) DO 140 IWHILB = 1, NBIG IF( I0.GT.N0 ) $ GO TO 150 * * While submatrix unfinished take a good dqds step. * CALL DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, $ NFAIL, $ ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1, $ DN2, G, TAU ) * PP = 1 - PP * * When EMIN is very small check for splits. * IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN IF( Z( 4*N0 ).LE.TOL2*QMAX .OR. $ Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN SPLT = I0 - 1 QMAX = Z( 4*I0-3 ) EMIN = Z( 4*I0-1 ) OLDEMN = Z( 4*I0 ) DO 130 I4 = 4*I0, 4*( N0-3 ), 4 IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR. $ Z( I4-1 ).LE.TOL2*SIGMA ) THEN Z( I4-1 ) = -SIGMA SPLT = I4 / 4 QMAX = ZERO EMIN = Z( I4+3 ) OLDEMN = Z( I4+4 ) ELSE QMAX = MAX( QMAX, Z( I4+1 ) ) EMIN = MIN( EMIN, Z( I4-1 ) ) OLDEMN = MIN( OLDEMN, Z( I4 ) ) END IF 130 CONTINUE Z( 4*N0-1 ) = EMIN Z( 4*N0 ) = OLDEMN I0 = SPLT + 1 END IF END IF * 140 CONTINUE * INFO = 2 * * Maximum number of iterations exceeded, restore the shift * SIGMA and place the new d's and e's in a qd array. * This might need to be done for several blocks * I1 = I0 N1 = N0 145 CONTINUE TEMPQ = Z( 4*I0-3 ) Z( 4*I0-3 ) = Z( 4*I0-3 ) + SIGMA DO K = I0+1, N0 TEMPE = Z( 4*K-5 ) Z( 4*K-5 ) = Z( 4*K-5 ) * (TEMPQ / Z( 4*K-7 )) TEMPQ = Z( 4*K-3 ) Z( 4*K-3 ) = Z( 4*K-3 ) + SIGMA + TEMPE - Z( 4*K-5 ) END DO * * Prepare to do this on the previous block if there is one * IF( I1.GT.1 ) THEN N1 = I1-1 DO WHILE( ( I1.GE.2 ) .AND. ( Z(4*I1-5).GE.ZERO ) ) I1 = I1 - 1 END DO SIGMA = -Z(4*N1-1) GO TO 145 END IF DO K = 1, N Z( 2*K-1 ) = Z( 4*K-3 ) * * Only the block 1..N0 is unfinished. The rest of the e's * must be essentially zero, although sometimes other data * has been stored in them. * IF( K.LT.N0 ) THEN Z( 2*K ) = Z( 4*K-1 ) ELSE Z( 2*K ) = 0 END IF END DO RETURN * * end IWHILB * 150 CONTINUE * 160 CONTINUE * INFO = 3 RETURN * * end IWHILA * 170 CONTINUE * * Move q's to the front. * DO 180 K = 2, N Z( K ) = Z( 4*K-3 ) 180 CONTINUE * * Sort and compute sum of eigenvalues. * CALL DLASRT( 'D', N, Z, IINFO ) * E = ZERO DO 190 K = N, 1, -1 E = E + Z( K ) 190 CONTINUE * * Store trace, sum(eigenvalues) and information on performance. * Z( 2*N+1 ) = TRACE Z( 2*N+2 ) = E Z( 2*N+3 ) = DBLE( ITER ) Z( 2*N+4 ) = DBLE( NDIV ) / DBLE( N**2 ) Z( 2*N+5 ) = HUNDRD*NFAIL / DBLE( ITER ) RETURN * * End of DLASQ2 * END