numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dlassq.f90 | 7049B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
!> \brief \b DLASSQ updates a sum of squares represented in scaled form. ! ! =========== DOCUMENTATION =========== ! ! Online html documentation available at ! http://www.netlib.org/lapack/explore-html/ ! !> \htmlonly !> Download DLASSQ + dependencies !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlassq.f90"> !> [TGZ]</a> !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlassq.f90"> !> [ZIP]</a> !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlassq.f90"> !> [TXT]</a> !> \endhtmlonly ! ! Definition: ! =========== ! ! SUBROUTINE DLASSQ( N, X, INCX, SCALE, SUMSQ ) ! ! .. Scalar Arguments .. ! INTEGER INCX, N ! DOUBLE PRECISION SCALE, SUMSQ ! .. ! .. Array Arguments .. ! DOUBLE PRECISION X( * ) ! .. ! ! !> \par Purpose: ! ============= !> !> \verbatim !> !> DLASSQ returns the values scale_out and sumsq_out such that !> !> (scale_out**2)*sumsq_out = x( 1 )**2 +...+ x( n )**2 + (scale**2)*sumsq, !> !> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is !> assumed to be non-negative. !> !> scale and sumsq must be supplied in SCALE and SUMSQ and !> scale_out and sumsq_out are overwritten on SCALE and SUMSQ respectively. !> !> \endverbatim ! ! Arguments: ! ========== ! !> \param[in] N !> \verbatim !> N is INTEGER !> The number of elements to be used from the vector x. !> \endverbatim !> !> \param[in] X !> \verbatim !> X is DOUBLE PRECISION array, dimension (1+(N-1)*abs(INCX)) !> The vector for which a scaled sum of squares is computed. !> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. !> \endverbatim !> !> \param[in] INCX !> \verbatim !> INCX is INTEGER !> The increment between successive values of the vector x. !> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n !> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n !> If INCX = 0, x isn't a vector so there is no need to call !> this subroutine. If you call it anyway, it will count x(1) !> in the vector norm N times. !> \endverbatim !> !> \param[in,out] SCALE !> \verbatim !> SCALE is DOUBLE PRECISION !> On entry, the value scale in the equation above. !> On exit, SCALE is overwritten by scale_out, the scaling factor !> for the sum of squares. !> \endverbatim !> !> \param[in,out] SUMSQ !> \verbatim !> SUMSQ is DOUBLE PRECISION !> On entry, the value sumsq in the equation above. !> On exit, SUMSQ is overwritten by sumsq_out, the basic sum of !> squares from which scale_out has been factored out. !> \endverbatim ! ! Authors: ! ======== ! !> \author Edward Anderson, Lockheed Martin ! !> \par Contributors: ! ================== !> !> Weslley Pereira, University of Colorado Denver, USA !> Nick Papior, Technical University of Denmark, DK ! !> \par Further Details: ! ===================== !> !> \verbatim !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> Blue, James L. (1978) !> A Portable Fortran Program to Find the Euclidean Norm of a Vector !> ACM Trans Math Softw 4:15--23 !> https://doi.org/10.1145/355769.355771 !> !> \endverbatim ! !> \ingroup lassq ! ! ===================================================================== subroutine DLASSQ( n, x, incx, scale, sumsq ) use LA_CONSTANTS, & only: wp=>dp, zero=>dzero, one=>done, & sbig=>dsbig, ssml=>dssml, tbig=>dtbig, tsml=>dtsml use LA_XISNAN ! ! -- LAPACK auxiliary routine -- ! -- LAPACK is a software package provided by Univ. of Tennessee, -- ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- ! ! .. Scalar Arguments .. integer :: incx, n real(wp) :: scale, sumsq ! .. ! .. Array Arguments .. real(wp) :: x(*) ! .. ! .. Local Scalars .. integer :: i, ix logical :: notbig real(wp) :: abig, amed, asml, ax, ymax, ymin ! .. ! ! Quick return if possible ! if( LA_ISNAN(scale) .or. LA_ISNAN(sumsq) ) return if( sumsq == zero ) scale = one if( scale == zero ) then scale = one sumsq = zero end if if (n <= 0) then return end if ! ! Compute the sum of squares in 3 accumulators: ! abig -- sums of squares scaled down to avoid overflow ! asml -- sums of squares scaled up to avoid underflow ! amed -- sums of squares that do not require scaling ! The thresholds and multipliers are ! tbig -- values bigger than this are scaled down by sbig ! tsml -- values smaller than this are scaled up by ssml ! notbig = .true. asml = zero amed = zero abig = zero ix = 1 if( incx < 0 ) ix = 1 - (n-1)*incx do i = 1, n ax = abs(x(ix)) if (ax > tbig) then abig = abig + (ax*sbig)**2 notbig = .false. else if (ax < tsml) then if (notbig) asml = asml + (ax*ssml)**2 else amed = amed + ax**2 end if ix = ix + incx end do ! ! Put the existing sum of squares into one of the accumulators ! if( sumsq > zero ) then ax = scale*sqrt( sumsq ) if (ax > tbig) then if (scale > one) then scale = scale * sbig abig = abig + scale * (scale * sumsq) else ! sumsq > tbig^2 => (sbig * (sbig * sumsq)) is representable abig = abig + scale * (scale * (sbig * (sbig * sumsq))) end if else if (ax < tsml) then if (notbig) then if (scale < one) then scale = scale * ssml asml = asml + scale * (scale * sumsq) else ! sumsq < tsml^2 => (ssml * (ssml * sumsq)) is representable asml = asml + scale * (scale * (ssml * (ssml * sumsq))) end if end if else amed = amed + scale * (scale * sumsq) end if end if ! ! Combine abig and amed or amed and asml if more than one ! accumulator was used. ! if (abig > zero) then ! ! Combine abig and amed if abig > 0. ! if (amed > zero .or. LA_ISNAN(amed)) then abig = abig + (amed*sbig)*sbig end if scale = one / sbig sumsq = abig else if (asml > zero) then ! ! Combine amed and asml if asml > 0. ! if (amed > zero .or. LA_ISNAN(amed)) then amed = sqrt(amed) asml = sqrt(asml) / ssml if (asml > amed) then ymin = amed ymax = asml else ymin = asml ymax = amed end if scale = one sumsq = ymax**2*( one + (ymin/ymax)**2 ) else scale = one / ssml sumsq = asml end if else ! ! Otherwise all values are mid-range or zero ! scale = one sumsq = amed end if return end subroutine