numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/dlaswlq.f 8124B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
*> \brief \b DLASWLQ
*
*  Definition:
*  ===========
*
*       SUBROUTINE DLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK,
*                            LWORK, INFO)
*
*       .. Scalar Arguments ..
*       INTEGER           INFO, LDA, M, N, MB, NB, LDT, LWORK
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DLASWLQ computes a blocked Tall-Skinny LQ factorization of
*> a real M-by-N matrix A for M <= N:
*>
*>    A = ( L 0 ) *  Q,
*>
*> where:
*>
*>    Q is a n-by-N orthogonal matrix, stored on exit in an implicit
*>    form in the elements above the diagonal of the array A and in
*>    the elements of the array T;
*>    L is a lower-triangular M-by-M matrix stored on exit in
*>    the elements on and below the diagonal of the array A.
*>    0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.
*>
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= M >= 0.
*> \endverbatim
*>
*> \param[in] MB
*> \verbatim
*>          MB is INTEGER
*>          The row block size to be used in the blocked QR.
*>          M >= MB >= 1
*> \endverbatim
*> \param[in] NB
*> \verbatim
*>          NB is INTEGER
*>          The column block size to be used in the blocked QR.
*>          NB > 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
*>          On entry, the M-by-N matrix A.
*>          On exit, the elements on and below the diagonal
*>          of the array contain the N-by-N lower triangular matrix L;
*>          the elements above the diagonal represent Q by the rows
*>          of blocked V (see Further Details).
*>
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*>          T is DOUBLE PRECISION array,
*>          dimension (LDT, N * Number_of_row_blocks)
*>          where Number_of_row_blocks = CEIL((N-M)/(NB-M))
*>          The blocked upper triangular block reflectors stored in compact form
*>          as a sequence of upper triangular blocks.
*>          See Further Details below.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*>          LDT is INTEGER
*>          The leading dimension of the array T.  LDT >= MB.
*> \endverbatim
*>
*>
*> \param[out] WORK
*> \verbatim
*>          (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.
*>          LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MB*M, otherwise.
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the minimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
*> representing Q as a product of other orthogonal matrices
*>   Q = Q(1) * Q(2) * . . . * Q(k)
*> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
*>   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
*>   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
*>   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
*>   . . .
*>
*> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
*> stored under the diagonal of rows 1:MB of A, and by upper triangular
*> block reflectors, stored in array T(1:LDT,1:N).
*> For more information see Further Details in GELQT.
*>
*> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
*> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
*> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
*> The last Q(k) may use fewer rows.
*> For more information see Further Details in TPQRT.
*>
*> For more details of the overall algorithm, see the description of
*> Sequential TSQR in Section 2.2 of [1].
*>
*> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
*>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
*>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
*> \endverbatim
*>
*> \ingroup laswlq
*>
*  =====================================================================
      SUBROUTINE DLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
     $                    INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N, MB, NB, LWORK, LDT
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), WORK( * ), T( LDT, * )
*     ..
*
*  =====================================================================
*
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, II, KK, CTR, MINMN, LWMIN
*     ..
*     .. EXTERNAL FUNCTIONS ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. EXTERNAL SUBROUTINES ..
      EXTERNAL           DGELQT, DTPLQT, XERBLA
*     ..
*     .. INTRINSIC FUNCTIONS ..
      INTRINSIC          MAX, MIN, MOD
*     ..
*     .. EXECUTABLE STATEMENTS ..
*
*     TEST THE INPUT ARGUMENTS
*
      INFO = 0
*
      LQUERY = ( LWORK.EQ.-1 )
*
      MINMN = MIN( M, N )
      IF( MINMN.EQ.0 ) THEN
         LWMIN = 1
      ELSE
         LWMIN = M*MB
      END IF
*
      IF( M.LT.0 ) THEN
        INFO = -1
      ELSE IF( N.LT.0 .OR. N.LT.M ) THEN
        INFO = -2
      ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 ) ) THEN
        INFO = -3
      ELSE IF( NB.LT.0 ) THEN
        INFO = -4
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        INFO = -6
      ELSE IF( LDT.LT.MB ) THEN
        INFO = -8
      ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN
        INFO = -10
      END IF
*
      IF( INFO.EQ.0 ) THEN
        WORK( 1 ) = LWMIN
      END IF
*
      IF( INFO.NE.0 ) THEN
        CALL XERBLA( 'DLASWLQ', -INFO )
        RETURN
      ELSE IF( LQUERY ) THEN
        RETURN
      END IF
*
*     Quick return if possible
*
      IF( MINMN.EQ.0 ) THEN
        RETURN
      END IF
*
*     The LQ Decomposition
*
      IF( (M.GE.N) .OR. (NB.LE.M) .OR. (NB.GE.N) ) THEN
        CALL DGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO )
        RETURN
      END IF
*
      KK = MOD((N-M),(NB-M))
      II = N-KK+1
*
*     Compute the LQ factorization of the first block A(1:M,1:NB)
*
      CALL DGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO )
      CTR = 1
*
      DO I = NB+1, II-NB+M, (NB-M)
*
*       Compute the QR factorization of the current block A(1:M,I:I+NB-M)
*
        CALL DTPLQT( M, NB-M, 0, MB, A(1,1), LDA, A( 1, I ),
     $                 LDA, T(1, CTR * M + 1),
     $                 LDT, WORK, INFO )
        CTR = CTR + 1
      END DO
*
*     Compute the QR factorization of the last block A(1:M,II:N)
*
      IF( II.LE.N ) THEN
        CALL DTPLQT( M, KK, 0, MB, A(1,1), LDA, A( 1, II ),
     $                 LDA, T(1, CTR * M + 1), LDT,
     $                 WORK, INFO )
      END IF
*
      WORK( 1 ) = LWMIN
*
      RETURN
*
*     End of DLASWLQ
*
      END