numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dlat2s.f | 4851B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
*> \brief \b DLAT2S converts a double-precision triangular matrix to a single-precision triangular matrix. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLAT2S + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlat2s.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlat2s.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlat2s.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DLAT2S( UPLO, N, A, LDA, SA, LDSA, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, LDA, LDSA, N * .. * .. Array Arguments .. * REAL SA( LDSA, * ) * DOUBLE PRECISION A( LDA, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLAT2S converts a DOUBLE PRECISION triangular matrix, SA, to a SINGLE *> PRECISION triangular matrix, A. *> *> RMAX is the overflow for the SINGLE PRECISION arithmetic *> DLAS2S checks that all the entries of A are between -RMAX and *> RMAX. If not the conversion is aborted and a flag is raised. *> *> This is an auxiliary routine so there is no argument checking. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': A is upper triangular; *> = 'L': A is lower triangular. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows and columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> On entry, the N-by-N triangular coefficient matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] SA *> \verbatim *> SA is REAL array, dimension (LDSA,N) *> Only the UPLO part of SA is referenced. On exit, if INFO=0, *> the N-by-N coefficient matrix SA; if INFO>0, the content of *> the UPLO part of SA is unspecified. *> \endverbatim *> *> \param[in] LDSA *> \verbatim *> LDSA is INTEGER *> The leading dimension of the array SA. LDSA >= max(1,M). *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> = 1: an entry of the matrix A is greater than the SINGLE *> PRECISION overflow threshold, in this case, the content *> of the UPLO part of SA in exit is unspecified. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup _lat2_ * * ===================================================================== SUBROUTINE DLAT2S( UPLO, N, A, LDA, SA, LDSA, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, LDSA, N * .. * .. Array Arguments .. REAL SA( LDSA, * ) DOUBLE PRECISION A( LDA, * ) * .. * * ===================================================================== * * .. Local Scalars .. INTEGER I, J DOUBLE PRECISION RMAX LOGICAL UPPER * .. * .. External Functions .. REAL SLAMCH LOGICAL LSAME EXTERNAL SLAMCH, LSAME * .. * .. Intrinsic Functions .. INTRINSIC REAL * .. * .. Executable Statements .. * RMAX = SLAMCH( 'O' ) UPPER = LSAME( UPLO, 'U' ) IF( UPPER ) THEN DO 20 J = 1, N DO 10 I = 1, J IF( ( A( I, J ).LT.-RMAX ) .OR. ( A( I, J ).GT.RMAX ) ) $ THEN INFO = 1 GO TO 50 END IF SA( I, J ) = REAL( A( I, J ) ) 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1, N DO 30 I = J, N IF( ( A( I, J ).LT.-RMAX ) .OR. ( A( I, J ).GT.RMAX ) ) $ THEN INFO = 1 GO TO 50 END IF SA( I, J ) = REAL( A( I, J ) ) 30 CONTINUE 40 CONTINUE END IF 50 CONTINUE * RETURN * * End of DLAT2S * END