numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/dlat2s.f 4851B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
*> \brief \b DLAT2S converts a double-precision triangular matrix to a single-precision triangular matrix.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLAT2S + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlat2s.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlat2s.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlat2s.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DLAT2S( UPLO, N, A, LDA, SA, LDSA, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDA, LDSA, N
*       ..
*       .. Array Arguments ..
*       REAL               SA( LDSA, * )
*       DOUBLE PRECISION   A( LDA, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DLAT2S converts a DOUBLE PRECISION triangular matrix, SA, to a SINGLE
*> PRECISION triangular matrix, A.
*>
*> RMAX is the overflow for the SINGLE PRECISION arithmetic
*> DLAS2S checks that all the entries of A are between -RMAX and
*> RMAX. If not the conversion is aborted and a flag is raised.
*>
*> This is an auxiliary routine so there is no argument checking.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  A is upper triangular;
*>          = 'L':  A is lower triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows and columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
*>          On entry, the N-by-N triangular coefficient matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] SA
*> \verbatim
*>          SA is REAL array, dimension (LDSA,N)
*>          Only the UPLO part of SA is referenced.  On exit, if INFO=0,
*>          the N-by-N coefficient matrix SA; if INFO>0, the content of
*>          the UPLO part of SA is unspecified.
*> \endverbatim
*>
*> \param[in] LDSA
*> \verbatim
*>          LDSA is INTEGER
*>          The leading dimension of the array SA.  LDSA >= max(1,M).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          = 1:  an entry of the matrix A is greater than the SINGLE
*>                PRECISION overflow threshold, in this case, the content
*>                of the UPLO part of SA in exit is unspecified.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup _lat2_
*
*  =====================================================================
      SUBROUTINE DLAT2S( UPLO, N, A, LDA, SA, LDSA, INFO )
*
*  -- LAPACK auxiliary routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LDSA, N
*     ..
*     .. Array Arguments ..
      REAL               SA( LDSA, * )
      DOUBLE PRECISION   A( LDA, * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, J
      DOUBLE PRECISION   RMAX
      LOGICAL            UPPER
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      LOGICAL            LSAME
      EXTERNAL           SLAMCH, LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          REAL
*     ..
*     .. Executable Statements ..
*
      RMAX = SLAMCH( 'O' )
      UPPER = LSAME( UPLO, 'U' )
      IF( UPPER ) THEN
         DO 20 J = 1, N
            DO 10 I = 1, J
               IF( ( A( I, J ).LT.-RMAX ) .OR. ( A( I, J ).GT.RMAX ) )
     $             THEN
                  INFO = 1
                  GO TO 50
               END IF
               SA( I, J ) = REAL( A( I, J ) )
   10       CONTINUE
   20    CONTINUE
      ELSE
         DO 40 J = 1, N
            DO 30 I = J, N
               IF( ( A( I, J ).LT.-RMAX ) .OR. ( A( I, J ).GT.RMAX ) )
     $             THEN
                  INFO = 1
                  GO TO 50
               END IF
               SA( I, J ) = REAL( A( I, J ) )
   30       CONTINUE
   40    CONTINUE
      END IF
   50 CONTINUE
*
      RETURN
*
*     End of DLAT2S
*
      END