numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/dorbdb5.f 8130B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
*> \brief \b DORBDB5
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DORBDB5 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorbdb5.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorbdb5.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorbdb5.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DORBDB5( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
*                           LDQ2, WORK, LWORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
*      $                   N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
*       ..
*
*
*> \par Purpose:
*  =============
*>
*>\verbatim
*>
*> DORBDB5 orthogonalizes the column vector
*>      X = [ X1 ]
*>          [ X2 ]
*> with respect to the columns of
*>      Q = [ Q1 ] .
*>          [ Q2 ]
*> The columns of Q must be orthonormal.
*>
*> If the projection is zero according to Kahan's "twice is enough"
*> criterion, then some other vector from the orthogonal complement
*> is returned. This vector is chosen in an arbitrary but deterministic
*> way.
*>
*>\endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M1
*> \verbatim
*>          M1 is INTEGER
*>           The dimension of X1 and the number of rows in Q1. 0 <= M1.
*> \endverbatim
*>
*> \param[in] M2
*> \verbatim
*>          M2 is INTEGER
*>           The dimension of X2 and the number of rows in Q2. 0 <= M2.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           The number of columns in Q1 and Q2. 0 <= N.
*> \endverbatim
*>
*> \param[in,out] X1
*> \verbatim
*>          X1 is DOUBLE PRECISION array, dimension (M1)
*>           On entry, the top part of the vector to be orthogonalized.
*>           On exit, the top part of the projected vector.
*> \endverbatim
*>
*> \param[in] INCX1
*> \verbatim
*>          INCX1 is INTEGER
*>           Increment for entries of X1.
*> \endverbatim
*>
*> \param[in,out] X2
*> \verbatim
*>          X2 is DOUBLE PRECISION array, dimension (M2)
*>           On entry, the bottom part of the vector to be
*>           orthogonalized. On exit, the bottom part of the projected
*>           vector.
*> \endverbatim
*>
*> \param[in] INCX2
*> \verbatim
*>          INCX2 is INTEGER
*>           Increment for entries of X2.
*> \endverbatim
*>
*> \param[in] Q1
*> \verbatim
*>          Q1 is DOUBLE PRECISION array, dimension (LDQ1, N)
*>           The top part of the orthonormal basis matrix.
*> \endverbatim
*>
*> \param[in] LDQ1
*> \verbatim
*>          LDQ1 is INTEGER
*>           The leading dimension of Q1. LDQ1 >= M1.
*> \endverbatim
*>
*> \param[in] Q2
*> \verbatim
*>          Q2 is DOUBLE PRECISION array, dimension (LDQ2, N)
*>           The bottom part of the orthonormal basis matrix.
*> \endverbatim
*>
*> \param[in] LDQ2
*> \verbatim
*>          LDQ2 is INTEGER
*>           The leading dimension of Q2. LDQ2 >= M2.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>           The dimension of the array WORK. LWORK >= N.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>           = 0:  successful exit.
*>           < 0:  if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup unbdb5
*
*  =====================================================================
      SUBROUTINE DORBDB5( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1,
     $                    Q2,
     $                    LDQ2, WORK, LWORK, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
     $                   N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   REALZERO
      PARAMETER          ( REALZERO = 0.0D0 )
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            CHILDINFO, I, J
      DOUBLE PRECISION   EPS, NORM, SCL, SSQ
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASSQ, DORBDB6, DSCAL, XERBLA
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DNRM2
      EXTERNAL           DLAMCH, DNRM2
*     ..
*     .. Intrinsic Function ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test input arguments
*
      INFO = 0
      IF( M1 .LT. 0 ) THEN
         INFO = -1
      ELSE IF( M2 .LT. 0 ) THEN
         INFO = -2
      ELSE IF( N .LT. 0 ) THEN
         INFO = -3
      ELSE IF( INCX1 .LT. 1 ) THEN
         INFO = -5
      ELSE IF( INCX2 .LT. 1 ) THEN
         INFO = -7
      ELSE IF( LDQ1 .LT. MAX( 1, M1 ) ) THEN
         INFO = -9
      ELSE IF( LDQ2 .LT. MAX( 1, M2 ) ) THEN
         INFO = -11
      ELSE IF( LWORK .LT. N ) THEN
         INFO = -13
      END IF
*
      IF( INFO .NE. 0 ) THEN
         CALL XERBLA( 'DORBDB5', -INFO )
         RETURN
      END IF
*
      EPS = DLAMCH( 'Precision' )
*
*     Project X onto the orthogonal complement of Q if X is nonzero
*
      SCL = REALZERO
      SSQ = REALZERO
      CALL DLASSQ( M1, X1, INCX1, SCL, SSQ )
      CALL DLASSQ( M2, X2, INCX2, SCL, SSQ )
      NORM = SCL * SQRT( SSQ )
*
      IF( NORM .GT. N * EPS ) THEN
*        Scale vector to unit norm to avoid problems in the caller code.
*        Computing the reciprocal is undesirable but
*         * xLASCL cannot be used because of the vector increments and
*         * the round-off error has a negligible impact on
*           orthogonalization.
         CALL DSCAL( M1, ONE / NORM, X1, INCX1 )
         CALL DSCAL( M2, ONE / NORM, X2, INCX2 )
         CALL DORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
     $              LDQ2, WORK, LWORK, CHILDINFO )
*
*        If the projection is nonzero, then return
*
         IF( DNRM2(M1,X1,INCX1) .NE. REALZERO
     $       .OR. DNRM2(M2,X2,INCX2) .NE. REALZERO ) THEN
            RETURN
         END IF
      END IF
*
*     Project each standard basis vector e_1,...,e_M1 in turn, stopping
*     when a nonzero projection is found
*
      DO I = 1, M1
         DO J = 1, M1
            X1(J) = ZERO
         END DO
         X1(I) = ONE
         DO J = 1, M2
            X2(J) = ZERO
         END DO
         CALL DORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
     $                 LDQ2, WORK, LWORK, CHILDINFO )
         IF( DNRM2(M1,X1,INCX1) .NE. REALZERO
     $       .OR. DNRM2(M2,X2,INCX2) .NE. REALZERO ) THEN
            RETURN
         END IF
      END DO
*
*     Project each standard basis vector e_(M1+1),...,e_(M1+M2) in turn,
*     stopping when a nonzero projection is found
*
      DO I = 1, M2
         DO J = 1, M1
            X1(J) = ZERO
         END DO
         DO J = 1, M2
            X2(J) = ZERO
         END DO
         X2(I) = ONE
         CALL DORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
     $                 LDQ2, WORK, LWORK, CHILDINFO )
         IF( DNRM2(M1,X1,INCX1) .NE. REALZERO
     $       .OR. DNRM2(M2,X2,INCX2) .NE. REALZERO ) THEN
            RETURN
         END IF
      END DO
*
      RETURN
*
*     End of DORBDB5
*
      END