numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dorcsd.f | 21269B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
*> \brief \b DORCSD * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DORCSD + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorcsd.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorcsd.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorcsd.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * RECURSIVE SUBROUTINE DORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, * SIGNS, M, P, Q, X11, LDX11, X12, * LDX12, X21, LDX21, X22, LDX22, THETA, * U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, * LDV2T, WORK, LWORK, IWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS * INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12, * $ LDX21, LDX22, LWORK, M, P, Q * .. * .. Array Arguments .. * INTEGER IWORK( * ) * DOUBLE PRECISION THETA( * ) * DOUBLE PRECISION U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), * $ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ), * $ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22, * $ * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DORCSD computes the CS decomposition of an M-by-M partitioned *> orthogonal matrix X: *> *> [ I 0 0 | 0 0 0 ] *> [ 0 C 0 | 0 -S 0 ] *> [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**T *> X = [-----------] = [---------] [---------------------] [---------] . *> [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] *> [ 0 S 0 | 0 C 0 ] *> [ 0 0 I | 0 0 0 ] *> *> X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P, *> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are *> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in *> which R = MIN(P,M-P,Q,M-Q). *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBU1 *> \verbatim *> JOBU1 is CHARACTER *> = 'Y': U1 is computed; *> otherwise: U1 is not computed. *> \endverbatim *> *> \param[in] JOBU2 *> \verbatim *> JOBU2 is CHARACTER *> = 'Y': U2 is computed; *> otherwise: U2 is not computed. *> \endverbatim *> *> \param[in] JOBV1T *> \verbatim *> JOBV1T is CHARACTER *> = 'Y': V1T is computed; *> otherwise: V1T is not computed. *> \endverbatim *> *> \param[in] JOBV2T *> \verbatim *> JOBV2T is CHARACTER *> = 'Y': V2T is computed; *> otherwise: V2T is not computed. *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER *> = 'T': X, U1, U2, V1T, and V2T are stored in row-major *> order; *> otherwise: X, U1, U2, V1T, and V2T are stored in column- *> major order. *> \endverbatim *> *> \param[in] SIGNS *> \verbatim *> SIGNS is CHARACTER *> = 'O': The lower-left block is made nonpositive (the *> "other" convention); *> otherwise: The upper-right block is made nonpositive (the *> "default" convention). *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows and columns in X. *> \endverbatim *> *> \param[in] P *> \verbatim *> P is INTEGER *> The number of rows in X11 and X12. 0 <= P <= M. *> \endverbatim *> *> \param[in] Q *> \verbatim *> Q is INTEGER *> The number of columns in X11 and X21. 0 <= Q <= M. *> \endverbatim *> *> \param[in,out] X11 *> \verbatim *> X11 is DOUBLE PRECISION array, dimension (LDX11,Q) *> On entry, part of the orthogonal matrix whose CSD is desired. *> \endverbatim *> *> \param[in] LDX11 *> \verbatim *> LDX11 is INTEGER *> The leading dimension of X11. LDX11 >= MAX(1,P). *> \endverbatim *> *> \param[in,out] X12 *> \verbatim *> X12 is DOUBLE PRECISION array, dimension (LDX12,M-Q) *> On entry, part of the orthogonal matrix whose CSD is desired. *> \endverbatim *> *> \param[in] LDX12 *> \verbatim *> LDX12 is INTEGER *> The leading dimension of X12. LDX12 >= MAX(1,P). *> \endverbatim *> *> \param[in,out] X21 *> \verbatim *> X21 is DOUBLE PRECISION array, dimension (LDX21,Q) *> On entry, part of the orthogonal matrix whose CSD is desired. *> \endverbatim *> *> \param[in] LDX21 *> \verbatim *> LDX21 is INTEGER *> The leading dimension of X11. LDX21 >= MAX(1,M-P). *> \endverbatim *> *> \param[in,out] X22 *> \verbatim *> X22 is DOUBLE PRECISION array, dimension (LDX22,M-Q) *> On entry, part of the orthogonal matrix whose CSD is desired. *> \endverbatim *> *> \param[in] LDX22 *> \verbatim *> LDX22 is INTEGER *> The leading dimension of X11. LDX22 >= MAX(1,M-P). *> \endverbatim *> *> \param[out] THETA *> \verbatim *> THETA is DOUBLE PRECISION array, dimension (R), in which R = *> MIN(P,M-P,Q,M-Q). *> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and *> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). *> \endverbatim *> *> \param[out] U1 *> \verbatim *> U1 is DOUBLE PRECISION array, dimension (LDU1,P) *> If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1. *> \endverbatim *> *> \param[in] LDU1 *> \verbatim *> LDU1 is INTEGER *> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= *> MAX(1,P). *> \endverbatim *> *> \param[out] U2 *> \verbatim *> U2 is DOUBLE PRECISION array, dimension (LDU2,M-P) *> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal *> matrix U2. *> \endverbatim *> *> \param[in] LDU2 *> \verbatim *> LDU2 is INTEGER *> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= *> MAX(1,M-P). *> \endverbatim *> *> \param[out] V1T *> \verbatim *> V1T is DOUBLE PRECISION array, dimension (LDV1T,Q) *> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal *> matrix V1**T. *> \endverbatim *> *> \param[in] LDV1T *> \verbatim *> LDV1T is INTEGER *> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= *> MAX(1,Q). *> \endverbatim *> *> \param[out] V2T *> \verbatim *> V2T is DOUBLE PRECISION array, dimension (LDV2T,M-Q) *> If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal *> matrix V2**T. *> \endverbatim *> *> \param[in] LDV2T *> \verbatim *> LDV2T is INTEGER *> The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >= *> MAX(1,M-Q). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> If INFO > 0 on exit, WORK(2:R) contains the values PHI(1), *> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), *> define the matrix in intermediate bidiagonal-block form *> remaining after nonconvergence. INFO specifies the number *> of nonzero PHI's. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the work array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (M-MIN(P, M-P, Q, M-Q)) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: DBBCSD did not converge. See the description of WORK *> above for details. *> \endverbatim * *> \par References: * ================ *> *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. *> Algorithms, 50(1):33-65, 2009. * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup uncsd * * ===================================================================== RECURSIVE SUBROUTINE DORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, $ TRANS, $ SIGNS, M, P, Q, X11, LDX11, X12, $ LDX12, X21, LDX21, X22, LDX22, THETA, $ U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, $ LDV2T, WORK, LWORK, IWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12, $ LDX21, LDX22, LWORK, M, P, Q * .. * .. Array Arguments .. INTEGER IWORK( * ) DOUBLE PRECISION THETA( * ) DOUBLE PRECISION U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), $ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ), $ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22, $ * ) * .. * * =================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D0, $ ZERO = 0.0D0 ) * .. * .. Local Scalars .. CHARACTER TRANST, SIGNST INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E, $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB, $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1, $ ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN, $ LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN, $ LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN, $ LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN, $ LORGQRWORKOPT, LWORKMIN, LWORKOPT LOGICAL COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2, $ WANTV1T, WANTV2T * .. * .. External Subroutines .. EXTERNAL DBBCSD, DLACPY, DLAPMR, DLAPMT, $ DORBDB, DORGLQ, DORGQR, XERBLA * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Intrinsic Functions INTRINSIC INT, MAX, MIN * .. * .. Executable Statements .. * * Test input arguments * INFO = 0 WANTU1 = LSAME( JOBU1, 'Y' ) WANTU2 = LSAME( JOBU2, 'Y' ) WANTV1T = LSAME( JOBV1T, 'Y' ) WANTV2T = LSAME( JOBV2T, 'Y' ) COLMAJOR = .NOT. LSAME( TRANS, 'T' ) DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' ) LQUERY = LWORK .EQ. -1 IF( M .LT. 0 ) THEN INFO = -7 ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN INFO = -8 ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN INFO = -9 ELSE IF ( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN INFO = -11 ELSE IF (.NOT. COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN INFO = -11 ELSE IF (COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN INFO = -13 ELSE IF (.NOT. COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN INFO = -13 ELSE IF (COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN INFO = -15 ELSE IF (.NOT. COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN INFO = -15 ELSE IF (COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN INFO = -17 ELSE IF (.NOT. COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN INFO = -17 ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN INFO = -20 ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN INFO = -22 ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN INFO = -24 ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN INFO = -26 END IF * * Work with transpose if convenient * IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN IF( COLMAJOR ) THEN TRANST = 'T' ELSE TRANST = 'N' END IF IF( DEFAULTSIGNS ) THEN SIGNST = 'O' ELSE SIGNST = 'D' END IF CALL DORCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, $ M, $ Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22, $ LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1, $ U2, LDU2, WORK, LWORK, IWORK, INFO ) RETURN END IF * * Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if * convenient * IF( INFO .EQ. 0 .AND. M-Q .LT. Q ) THEN IF( DEFAULTSIGNS ) THEN SIGNST = 'O' ELSE SIGNST = 'D' END IF CALL DORCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M, $ M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11, $ LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T, $ LDV1T, WORK, LWORK, IWORK, INFO ) RETURN END IF * * Compute workspace * IF( INFO .EQ. 0 ) THEN * IPHI = 2 ITAUP1 = IPHI + MAX( 1, Q - 1 ) ITAUP2 = ITAUP1 + MAX( 1, P ) ITAUQ1 = ITAUP2 + MAX( 1, M - P ) ITAUQ2 = ITAUQ1 + MAX( 1, Q ) IORGQR = ITAUQ2 + MAX( 1, M - Q ) CALL DORGQR( M-Q, M-Q, M-Q, U1, MAX(1,M-Q), U1, WORK, -1, $ CHILDINFO ) LORGQRWORKOPT = INT( WORK(1) ) LORGQRWORKMIN = MAX( 1, M - Q ) IORGLQ = ITAUQ2 + MAX( 1, M - Q ) CALL DORGLQ( M-Q, M-Q, M-Q, U1, MAX(1,M-Q), U1, WORK, -1, $ CHILDINFO ) LORGLQWORKOPT = INT( WORK(1) ) LORGLQWORKMIN = MAX( 1, M - Q ) IORBDB = ITAUQ2 + MAX( 1, M - Q ) CALL DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, $ X21, LDX21, X22, LDX22, THETA, V1T, U1, U2, V1T, $ V2T, WORK, -1, CHILDINFO ) LORBDBWORKOPT = INT( WORK(1) ) LORBDBWORKMIN = LORBDBWORKOPT IB11D = ITAUQ2 + MAX( 1, M - Q ) IB11E = IB11D + MAX( 1, Q ) IB12D = IB11E + MAX( 1, Q - 1 ) IB12E = IB12D + MAX( 1, Q ) IB21D = IB12E + MAX( 1, Q - 1 ) IB21E = IB21D + MAX( 1, Q ) IB22D = IB21E + MAX( 1, Q - 1 ) IB22E = IB22D + MAX( 1, Q ) IBBCSD = IB22E + MAX( 1, Q - 1 ) CALL DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, $ THETA, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, $ LDV2T, U1, U1, U1, U1, U1, U1, U1, U1, WORK, -1, $ CHILDINFO ) LBBCSDWORKOPT = INT( WORK(1) ) LBBCSDWORKMIN = LBBCSDWORKOPT LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT, $ IORBDB + LORBDBWORKOPT, IBBCSD + LBBCSDWORKOPT ) - 1 LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN, $ IORBDB + LORBDBWORKOPT, IBBCSD + LBBCSDWORKMIN ) - 1 WORK(1) = MAX(LWORKOPT,LWORKMIN) * IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN INFO = -22 ELSE LORGQRWORK = LWORK - IORGQR + 1 LORGLQWORK = LWORK - IORGLQ + 1 LORBDBWORK = LWORK - IORBDB + 1 LBBCSDWORK = LWORK - IBBCSD + 1 END IF END IF * * Abort if any illegal arguments * IF( INFO .NE. 0 ) THEN CALL XERBLA( 'DORCSD', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Transform to bidiagonal block form * CALL DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, $ X21, $ LDX21, X22, LDX22, THETA, WORK(IPHI), WORK(ITAUP1), $ WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2), $ WORK(IORBDB), LORBDBWORK, CHILDINFO ) * * Accumulate Householder reflectors * IF( COLMAJOR ) THEN IF( WANTU1 .AND. P .GT. 0 ) THEN CALL DLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 ) CALL DORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), $ WORK(IORGQR), $ LORGQRWORK, INFO) END IF IF( WANTU2 .AND. M-P .GT. 0 ) THEN CALL DLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 ) CALL DORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2), $ WORK(IORGQR), LORGQRWORK, INFO ) END IF IF( WANTV1T .AND. Q .GT. 0 ) THEN CALL DLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2), $ LDV1T ) V1T(1, 1) = ONE DO J = 2, Q V1T(1,J) = ZERO V1T(J,1) = ZERO END DO CALL DORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, $ WORK(ITAUQ1), $ WORK(IORGLQ), LORGLQWORK, INFO ) END IF IF( WANTV2T .AND. M-Q .GT. 0 ) THEN CALL DLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T ) IF (M-P .GT. Q) Then CALL DLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22, $ V2T(P+1,P+1), LDV2T ) END IF IF (M .GT. Q) THEN CALL DORGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2), $ WORK(IORGLQ), LORGLQWORK, INFO ) END IF END IF ELSE IF( WANTU1 .AND. P .GT. 0 ) THEN CALL DLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 ) CALL DORGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), $ WORK(IORGLQ), $ LORGLQWORK, INFO) END IF IF( WANTU2 .AND. M-P .GT. 0 ) THEN CALL DLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 ) CALL DORGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2), $ WORK(IORGLQ), LORGLQWORK, INFO ) END IF IF( WANTV1T .AND. Q .GT. 0 ) THEN CALL DLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2), $ LDV1T ) V1T(1, 1) = ONE DO J = 2, Q V1T(1,J) = ZERO V1T(J,1) = ZERO END DO CALL DORGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, $ WORK(ITAUQ1), $ WORK(IORGQR), LORGQRWORK, INFO ) END IF IF( WANTV2T .AND. M-Q .GT. 0 ) THEN CALL DLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T ) CALL DLACPY( 'L', M-P-Q, M-P-Q, X22(P+1,Q+1), LDX22, $ V2T(P+1,P+1), LDV2T ) CALL DORGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2), $ WORK(IORGQR), LORGQRWORK, INFO ) END IF END IF * * Compute the CSD of the matrix in bidiagonal-block form * CALL DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, $ THETA, $ WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, $ LDV2T, WORK(IB11D), WORK(IB11E), WORK(IB12D), $ WORK(IB12E), WORK(IB21D), WORK(IB21E), WORK(IB22D), $ WORK(IB22E), WORK(IBBCSD), LBBCSDWORK, INFO ) * * Permute rows and columns to place identity submatrices in top- * left corner of (1,1)-block and/or bottom-right corner of (1,2)- * block and/or bottom-right corner of (2,1)-block and/or top-left * corner of (2,2)-block * IF( Q .GT. 0 .AND. WANTU2 ) THEN DO I = 1, Q IWORK(I) = M - P - Q + I END DO DO I = Q + 1, M - P IWORK(I) = I - Q END DO IF( COLMAJOR ) THEN CALL DLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK ) ELSE CALL DLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK ) END IF END IF IF( M .GT. 0 .AND. WANTV2T ) THEN DO I = 1, P IWORK(I) = M - P - Q + I END DO DO I = P + 1, M - Q IWORK(I) = I - P END DO IF( .NOT. COLMAJOR ) THEN CALL DLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK ) ELSE CALL DLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK ) END IF END IF * RETURN * * End DORCSD * END