numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dorhr_col.f | 14304B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
*> \brief \b DORHR_COL * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DORHR_COL + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorhr_col.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorhr_col.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorhr_col.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDT, M, N, NB * .. * .. Array Arguments .. * DOUBLE PRECISION A( LDA, * ), D( * ), T( LDT, * ) * .. * *> \par Purpose: * ============= *> *> \verbatim *> *> DORHR_COL takes an M-by-N real matrix Q_in with orthonormal columns *> as input, stored in A, and performs Householder Reconstruction (HR), *> i.e. reconstructs Householder vectors V(i) implicitly representing *> another M-by-N matrix Q_out, with the property that Q_in = Q_out*S, *> where S is an N-by-N diagonal matrix with diagonal entries *> equal to +1 or -1. The Householder vectors (columns V(i) of V) are *> stored in A on output, and the diagonal entries of S are stored in D. *> Block reflectors are also returned in T *> (same output format as DGEQRT). *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. M >= N >= 0. *> \endverbatim *> *> \param[in] NB *> \verbatim *> NB is INTEGER *> The column block size to be used in the reconstruction *> of Householder column vector blocks in the array A and *> corresponding block reflectors in the array T. NB >= 1. *> (Note that if NB > N, then N is used instead of NB *> as the column block size.) *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> *> On entry: *> *> The array A contains an M-by-N orthonormal matrix Q_in, *> i.e the columns of A are orthogonal unit vectors. *> *> On exit: *> *> The elements below the diagonal of A represent the unit *> lower-trapezoidal matrix V of Householder column vectors *> V(i). The unit diagonal entries of V are not stored *> (same format as the output below the diagonal in A from *> DGEQRT). The matrix T and the matrix V stored on output *> in A implicitly define Q_out. *> *> The elements above the diagonal contain the factor U *> of the "modified" LU-decomposition: *> Q_in - ( S ) = V * U *> ( 0 ) *> where 0 is a (M-N)-by-(M-N) zero matrix. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[out] T *> \verbatim *> T is DOUBLE PRECISION array, *> dimension (LDT, N) *> *> Let NOCB = Number_of_output_col_blocks *> = CEIL(N/NB) *> *> On exit, T(1:NB, 1:N) contains NOCB upper-triangular *> block reflectors used to define Q_out stored in compact *> form as a sequence of upper-triangular NB-by-NB column *> blocks (same format as the output T in DGEQRT). *> The matrix T and the matrix V stored on output in A *> implicitly define Q_out. NOTE: The lower triangles *> below the upper-triangular blocks will be filled with *> zeros. See Further Details. *> \endverbatim *> *> \param[in] LDT *> \verbatim *> LDT is INTEGER *> The leading dimension of the array T. *> LDT >= max(1,min(NB,N)). *> \endverbatim *> *> \param[out] D *> \verbatim *> D is DOUBLE PRECISION array, dimension min(M,N). *> The elements can be only plus or minus one. *> *> D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where *> 1 <= i <= min(M,N), and Q_in_i is Q_in after performing *> i-1 steps of “modified” Gaussian elimination. *> See Further Details. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim *> *> \par Further Details: * ===================== *> *> \verbatim *> *> The computed M-by-M orthogonal factor Q_out is defined implicitly as *> a product of orthogonal matrices Q_out(i). Each Q_out(i) is stored in *> the compact WY-representation format in the corresponding blocks of *> matrices V (stored in A) and T. *> *> The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N *> matrix A contains the column vectors V(i) in NB-size column *> blocks VB(j). For example, VB(1) contains the columns *> V(1), V(2), ... V(NB). NOTE: The unit entries on *> the diagonal of Y are not stored in A. *> *> The number of column blocks is *> *> NOCB = Number_of_output_col_blocks = CEIL(N/NB) *> *> where each block is of order NB except for the last block, which *> is of order LAST_NB = N - (NOCB-1)*NB. *> *> For example, if M=6, N=5 and NB=2, the matrix V is *> *> *> V = ( VB(1), VB(2), VB(3) ) = *> *> = ( 1 ) *> ( v21 1 ) *> ( v31 v32 1 ) *> ( v41 v42 v43 1 ) *> ( v51 v52 v53 v54 1 ) *> ( v61 v62 v63 v54 v65 ) *> *> *> For each of the column blocks VB(i), an upper-triangular block *> reflector TB(i) is computed. These blocks are stored as *> a sequence of upper-triangular column blocks in the NB-by-N *> matrix T. The size of each TB(i) block is NB-by-NB, except *> for the last block, whose size is LAST_NB-by-LAST_NB. *> *> For example, if M=6, N=5 and NB=2, the matrix T is *> *> T = ( TB(1), TB(2), TB(3) ) = *> *> = ( t11 t12 t13 t14 t15 ) *> ( t22 t24 ) *> *> *> The M-by-M factor Q_out is given as a product of NOCB *> orthogonal M-by-M matrices Q_out(i). *> *> Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB), *> *> where each matrix Q_out(i) is given by the WY-representation *> using corresponding blocks from the matrices V and T: *> *> Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T, *> *> where I is the identity matrix. Here is the formula with matrix *> dimensions: *> *> Q(i){M-by-M} = I{M-by-M} - *> VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M}, *> *> where INB = NB, except for the last block NOCB *> for which INB=LAST_NB. *> *> ===== *> NOTE: *> ===== *> *> If Q_in is the result of doing a QR factorization *> B = Q_in * R_in, then: *> *> B = (Q_out*S) * R_in = Q_out * (S * R_in) = Q_out * R_out. *> *> So if one wants to interpret Q_out as the result *> of the QR factorization of B, then the corresponding R_out *> should be equal to R_out = S * R_in, i.e. some rows of R_in *> should be multiplied by -1. *> *> For the details of the algorithm, see [1]. *> *> [1] "Reconstructing Householder vectors from tall-skinny QR", *> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen, *> E. Solomonik, J. Parallel Distrib. Comput., *> vol. 85, pp. 3-31, 2015. *> \endverbatim *> * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup unhr_col * *> \par Contributors: * ================== *> *> \verbatim *> *> November 2019, Igor Kozachenko, *> Computer Science Division, *> University of California, Berkeley *> *> \endverbatim * * ===================================================================== SUBROUTINE DORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO ) IMPLICIT NONE * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDT, M, N, NB * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), D( * ), T( LDT, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. INTEGER I, IINFO, J, JB, JBTEMP1, JBTEMP2, JNB, $ NPLUSONE * .. * .. External Subroutines .. EXTERNAL DCOPY, DLAORHR_COL_GETRFNP, DSCAL, $ DTRSM, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 .OR. N.GT.M ) THEN INFO = -2 ELSE IF( NB.LT.1 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -5 ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN INFO = -7 END IF * * Handle error in the input parameters. * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DORHR_COL', -INFO ) RETURN END IF * * Quick return if possible * IF( MIN( M, N ).EQ.0 ) THEN RETURN END IF * * On input, the M-by-N matrix A contains the orthogonal * M-by-N matrix Q_in. * * (1) Compute the unit lower-trapezoidal V (ones on the diagonal * are not stored) by performing the "modified" LU-decomposition. * * Q_in - ( S ) = V * U = ( V1 ) * U, * ( 0 ) ( V2 ) * * where 0 is an (M-N)-by-N zero matrix. * * (1-1) Factor V1 and U. CALL DLAORHR_COL_GETRFNP( N, N, A, LDA, D, IINFO ) * * (1-2) Solve for V2. * IF( M.GT.N ) THEN CALL DTRSM( 'R', 'U', 'N', 'N', M-N, N, ONE, A, LDA, $ A( N+1, 1 ), LDA ) END IF * * (2) Reconstruct the block reflector T stored in T(1:NB, 1:N) * as a sequence of upper-triangular blocks with NB-size column * blocking. * * Loop over the column blocks of size NB of the array A(1:M,1:N) * and the array T(1:NB,1:N), JB is the column index of a column * block, JNB is the column block size at each step JB. * NPLUSONE = N + 1 DO JB = 1, N, NB * * (2-0) Determine the column block size JNB. * JNB = MIN( NPLUSONE-JB, NB ) * * (2-1) Copy the upper-triangular part of the current JNB-by-JNB * diagonal block U(JB) (of the N-by-N matrix U) stored * in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part * of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1) * column-by-column, total JNB*(JNB+1)/2 elements. * JBTEMP1 = JB - 1 DO J = JB, JB+JNB-1 CALL DCOPY( J-JBTEMP1, A( JB, J ), 1, T( 1, J ), 1 ) END DO * * (2-2) Perform on the upper-triangular part of the current * JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored * in T(1:JNB,JB:JB+JNB-1) the following operation in place: * (-1)*U(JB)*S(JB), i.e the result will be stored in the upper- * triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication * of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB * diagonal block S(JB) of the N-by-N sign matrix S from the * right means changing the sign of each J-th column of the block * U(JB) according to the sign of the diagonal element of the block * S(JB), i.e. S(J,J) that is stored in the array element D(J). * DO J = JB, JB+JNB-1 IF( D( J ).EQ.ONE ) THEN CALL DSCAL( J-JBTEMP1, -ONE, T( 1, J ), 1 ) END IF END DO * * (2-3) Perform the triangular solve for the current block * matrix X(JB): * * X(JB) * (A(JB)**T) = B(JB), where: * * A(JB)**T is a JNB-by-JNB unit upper-triangular * coefficient block, and A(JB)=V1(JB), which * is a JNB-by-JNB unit lower-triangular block * stored in A(JB:JB+JNB-1,JB:JB+JNB-1). * The N-by-N matrix V1 is the upper part * of the M-by-N lower-trapezoidal matrix V * stored in A(1:M,1:N); * * B(JB) is a JNB-by-JNB upper-triangular right-hand * side block, B(JB) = (-1)*U(JB)*S(JB), and * B(JB) is stored in T(1:JNB,JB:JB+JNB-1); * * X(JB) is a JNB-by-JNB upper-triangular solution * block, X(JB) is the upper-triangular block * reflector T(JB), and X(JB) is stored * in T(1:JNB,JB:JB+JNB-1). * * In other words, we perform the triangular solve for the * upper-triangular block T(JB): * * T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB). * * Even though the blocks X(JB) and B(JB) are upper- * triangular, the routine DTRSM will access all JNB**2 * elements of the square T(1:JNB,JB:JB+JNB-1). Therefore, * we need to set to zero the elements of the block * T(1:JNB,JB:JB+JNB-1) below the diagonal before the call * to DTRSM. * * (2-3a) Set the elements to zero. * JBTEMP2 = JB - 2 DO J = JB, JB+JNB-2 DO I = J-JBTEMP2, MIN( NB, N ) T( I, J ) = ZERO END DO END DO * * (2-3b) Perform the triangular solve. * CALL DTRSM( 'R', 'L', 'T', 'U', JNB, JNB, ONE, $ A( JB, JB ), LDA, T( 1, JB ), LDT ) * END DO * RETURN * * End of DORHR_COL * END