numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dpbstf.f | 9096B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
*> \brief \b DPBSTF * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DPBSTF + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpbstf.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpbstf.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpbstf.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DPBSTF( UPLO, N, KD, AB, LDAB, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, KD, LDAB, N * .. * .. Array Arguments .. * DOUBLE PRECISION AB( LDAB, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DPBSTF computes a split Cholesky factorization of a real *> symmetric positive definite band matrix A. *> *> This routine is designed to be used in conjunction with DSBGST. *> *> The factorization has the form A = S**T*S where S is a band matrix *> of the same bandwidth as A and the following structure: *> *> S = ( U ) *> ( M L ) *> *> where U is upper triangular of order m = (n+kd)/2, and L is lower *> triangular of order n-m. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangle of A is stored; *> = 'L': Lower triangle of A is stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] KD *> \verbatim *> KD is INTEGER *> The number of superdiagonals of the matrix A if UPLO = 'U', *> or the number of subdiagonals if UPLO = 'L'. KD >= 0. *> \endverbatim *> *> \param[in,out] AB *> \verbatim *> AB is DOUBLE PRECISION array, dimension (LDAB,N) *> On entry, the upper or lower triangle of the symmetric band *> matrix A, stored in the first kd+1 rows of the array. The *> j-th column of A is stored in the j-th column of the array AB *> as follows: *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). *> *> On exit, if INFO = 0, the factor S from the split Cholesky *> factorization A = S**T*S. See Further Details. *> \endverbatim *> *> \param[in] LDAB *> \verbatim *> LDAB is INTEGER *> The leading dimension of the array AB. LDAB >= KD+1. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, the factorization could not be completed, *> because the updated element a(i,i) was negative; the *> matrix A is not positive definite. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup pbstf * *> \par Further Details: * ===================== *> *> \verbatim *> *> The band storage scheme is illustrated by the following example, when *> N = 7, KD = 2: *> *> S = ( s11 s12 s13 ) *> ( s22 s23 s24 ) *> ( s33 s34 ) *> ( s44 ) *> ( s53 s54 s55 ) *> ( s64 s65 s66 ) *> ( s75 s76 s77 ) *> *> If UPLO = 'U', the array AB holds: *> *> on entry: on exit: *> *> * * a13 a24 a35 a46 a57 * * s13 s24 s53 s64 s75 *> * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54 s65 s76 *> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77 *> *> If UPLO = 'L', the array AB holds: *> *> on entry: on exit: *> *> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77 *> a21 a32 a43 a54 a65 a76 * s12 s23 s34 s54 s65 s76 * *> a31 a42 a53 a64 a64 * * s13 s24 s53 s64 s75 * * *> *> Array elements marked * are not used by the routine. *> \endverbatim *> * ===================================================================== SUBROUTINE DPBSTF( UPLO, N, KD, AB, LDAB, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, KD, LDAB, N * .. * .. Array Arguments .. DOUBLE PRECISION AB( LDAB, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER J, KLD, KM, M DOUBLE PRECISION AJJ * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL DSCAL, DSYR, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( KD.LT.0 ) THEN INFO = -3 ELSE IF( LDAB.LT.KD+1 ) THEN INFO = -5 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DPBSTF', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * KLD = MAX( 1, LDAB-1 ) * * Set the splitting point m. * M = ( N+KD ) / 2 * IF( UPPER ) THEN * * Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m). * DO 10 J = N, M + 1, -1 * * Compute s(j,j) and test for non-positive-definiteness. * AJJ = AB( KD+1, J ) IF( AJJ.LE.ZERO ) $ GO TO 50 AJJ = SQRT( AJJ ) AB( KD+1, J ) = AJJ KM = MIN( J-1, KD ) * * Compute elements j-km:j-1 of the j-th column and update the * the leading submatrix within the band. * CALL DSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 ) CALL DSYR( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1, $ AB( KD+1, J-KM ), KLD ) 10 CONTINUE * * Factorize the updated submatrix A(1:m,1:m) as U**T*U. * DO 20 J = 1, M * * Compute s(j,j) and test for non-positive-definiteness. * AJJ = AB( KD+1, J ) IF( AJJ.LE.ZERO ) $ GO TO 50 AJJ = SQRT( AJJ ) AB( KD+1, J ) = AJJ KM = MIN( KD, M-J ) * * Compute elements j+1:j+km of the j-th row and update the * trailing submatrix within the band. * IF( KM.GT.0 ) THEN CALL DSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD ) CALL DSYR( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD, $ AB( KD+1, J+1 ), KLD ) END IF 20 CONTINUE ELSE * * Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m). * DO 30 J = N, M + 1, -1 * * Compute s(j,j) and test for non-positive-definiteness. * AJJ = AB( 1, J ) IF( AJJ.LE.ZERO ) $ GO TO 50 AJJ = SQRT( AJJ ) AB( 1, J ) = AJJ KM = MIN( J-1, KD ) * * Compute elements j-km:j-1 of the j-th row and update the * trailing submatrix within the band. * CALL DSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD ) CALL DSYR( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD, $ AB( 1, J-KM ), KLD ) 30 CONTINUE * * Factorize the updated submatrix A(1:m,1:m) as U**T*U. * DO 40 J = 1, M * * Compute s(j,j) and test for non-positive-definiteness. * AJJ = AB( 1, J ) IF( AJJ.LE.ZERO ) $ GO TO 50 AJJ = SQRT( AJJ ) AB( 1, J ) = AJJ KM = MIN( KD, M-J ) * * Compute elements j+1:j+km of the j-th column and update the * trailing submatrix within the band. * IF( KM.GT.0 ) THEN CALL DSCAL( KM, ONE / AJJ, AB( 2, J ), 1 ) CALL DSYR( 'Lower', KM, -ONE, AB( 2, J ), 1, $ AB( 1, J+1 ), KLD ) END IF 40 CONTINUE END IF RETURN * 50 CONTINUE INFO = J RETURN * * End of DPBSTF * END