numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/dpoequb.f 6047B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
*> \brief \b DPOEQUB
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DPOEQUB + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpoequb.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpoequb.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpoequb.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, N
*       DOUBLE PRECISION   AMAX, SCOND
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( LDA, * ), S( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DPOEQUB computes row and column scalings intended to equilibrate a
*> symmetric positive definite matrix A and reduce its condition number
*> (with respect to the two-norm).  S contains the scale factors,
*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
*> choice of S puts the condition number of B within a factor N of the
*> smallest possible condition number over all possible diagonal
*> scalings.
*>
*> This routine differs from DPOEQU by restricting the scaling factors
*> to a power of the radix.  Barring over- and underflow, scaling by
*> these factors introduces no additional rounding errors.  However, the
*> scaled diagonal entries are no longer approximately 1 but lie
*> between sqrt(radix) and 1/sqrt(radix).
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
*>          The N-by-N symmetric positive definite matrix whose scaling
*>          factors are to be computed.  Only the diagonal elements of A
*>          are referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*>          S is DOUBLE PRECISION array, dimension (N)
*>          If INFO = 0, S contains the scale factors for A.
*> \endverbatim
*>
*> \param[out] SCOND
*> \verbatim
*>          SCOND is DOUBLE PRECISION
*>          If INFO = 0, S contains the ratio of the smallest S(i) to
*>          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
*>          large nor too small, it is not worth scaling by S.
*> \endverbatim
*>
*> \param[out] AMAX
*> \verbatim
*>          AMAX is DOUBLE PRECISION
*>          Absolute value of largest matrix element.  If AMAX is very
*>          close to overflow or very close to underflow, the matrix
*>          should be scaled.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup poequb
*
*  =====================================================================
      SUBROUTINE DPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, N
      DOUBLE PRECISION   AMAX, SCOND
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), S( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   SMIN, BASE, TMP
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, SQRT, LOG, INT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
*     Positive definite only performs 1 pass of equilibration.
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -3
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DPOEQUB', -INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 ) THEN
         SCOND = ONE
         AMAX = ZERO
         RETURN
      END IF

      BASE = DLAMCH( 'B' )
      TMP = -0.5D+0 / LOG ( BASE )
*
*     Find the minimum and maximum diagonal elements.
*
      S( 1 ) = A( 1, 1 )
      SMIN = S( 1 )
      AMAX = S( 1 )
      DO 10 I = 2, N
         S( I ) = A( I, I )
         SMIN = MIN( SMIN, S( I ) )
         AMAX = MAX( AMAX, S( I ) )
   10 CONTINUE
*
      IF( SMIN.LE.ZERO ) THEN
*
*        Find the first non-positive diagonal element and return.
*
         DO 20 I = 1, N
            IF( S( I ).LE.ZERO ) THEN
               INFO = I
               RETURN
            END IF
   20    CONTINUE
      ELSE
*
*        Set the scale factors to the reciprocals
*        of the diagonal elements.
*
         DO 30 I = 1, N
            S( I ) = BASE ** INT( TMP * LOG( S( I ) ) )
   30    CONTINUE
*
*        Compute SCOND = min(S(I)) / max(S(I)).
*
         SCOND = SQRT( SMIN ) / SQRT( AMAX )
      END IF
*
      RETURN
*
*     End of DPOEQUB
*
      END