numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dsgesv.f | 13260B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
*> \brief <b> DSGESV computes the solution to system of linear equations A * X = B for GE matrices</b> (mixed precision with iterative refinement) * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DSGESV + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsgesv.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsgesv.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsgesv.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DSGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK, * SWORK, ITER, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, ITER, LDA, LDB, LDX, N, NRHS * .. * .. Array Arguments .. * INTEGER IPIV( * ) * REAL SWORK( * ) * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( N, * ), * $ X( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DSGESV computes the solution to a real system of linear equations *> A * X = B, *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices. *> *> DSGESV first attempts to factorize the matrix in SINGLE PRECISION *> and use this factorization within an iterative refinement procedure *> to produce a solution with DOUBLE PRECISION normwise backward error *> quality (see below). If the approach fails the method switches to a *> DOUBLE PRECISION factorization and solve. *> *> The iterative refinement is not going to be a winning strategy if *> the ratio SINGLE PRECISION performance over DOUBLE PRECISION *> performance is too small. A reasonable strategy should take the *> number of right-hand sides and the size of the matrix into account. *> This might be done with a call to ILAENV in the future. Up to now, we *> always try iterative refinement. *> *> The iterative refinement process is stopped if *> ITER > ITERMAX *> or for all the RHS we have: *> RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX *> where *> o ITER is the number of the current iteration in the iterative *> refinement process *> o RNRM is the infinity-norm of the residual *> o XNRM is the infinity-norm of the solution *> o ANRM is the infinity-operator-norm of the matrix A *> o EPS is the machine epsilon returned by DLAMCH('Epsilon') *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 *> respectively. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The number of linear equations, i.e., the order of the *> matrix A. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of the matrix B. NRHS >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is DOUBLE PRECISION array, *> dimension (LDA,N) *> On entry, the N-by-N coefficient matrix A. *> On exit, if iterative refinement has been successfully used *> (INFO = 0 and ITER >= 0, see description below), then A is *> unchanged, if double precision factorization has been used *> (INFO = 0 and ITER < 0, see description below), then the *> array A contains the factors L and U from the factorization *> A = P*L*U; the unit diagonal elements of L are not stored. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> The pivot indices that define the permutation matrix P; *> row i of the matrix was interchanged with row IPIV(i). *> Corresponds either to the single precision factorization *> (if INFO = 0 and ITER >= 0) or the double precision *> factorization (if INFO = 0 and ITER < 0). *> \endverbatim *> *> \param[in] B *> \verbatim *> B is DOUBLE PRECISION array, dimension (LDB,NRHS) *> The N-by-NRHS right hand side matrix B. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] X *> \verbatim *> X is DOUBLE PRECISION array, dimension (LDX,NRHS) *> If INFO = 0, the N-by-NRHS solution matrix X. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. LDX >= max(1,N). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (N,NRHS) *> This array is used to hold the residual vectors. *> \endverbatim *> *> \param[out] SWORK *> \verbatim *> SWORK is REAL array, dimension (N*(N+NRHS)) *> This array is used to use the single precision matrix and the *> right-hand sides or solutions in single precision. *> \endverbatim *> *> \param[out] ITER *> \verbatim *> ITER is INTEGER *> < 0: iterative refinement has failed, double precision *> factorization has been performed *> -1 : the routine fell back to full precision for *> implementation- or machine-specific reasons *> -2 : narrowing the precision induced an overflow, *> the routine fell back to full precision *> -3 : failure of SGETRF *> -31: stop the iterative refinement after the 30th *> iterations *> > 0: iterative refinement has been successfully used. *> Returns the number of iterations *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, U(i,i) computed in DOUBLE PRECISION is *> exactly zero. The factorization has been completed, *> but the factor U is exactly singular, so the solution *> could not be computed. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup gesv_mixed * * ===================================================================== SUBROUTINE DSGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK, $ SWORK, ITER, INFO ) * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, ITER, LDA, LDB, LDX, N, NRHS * .. * .. Array Arguments .. INTEGER IPIV( * ) REAL SWORK( * ) DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( N, * ), $ X( LDX, * ) * .. * * ===================================================================== * * .. Parameters .. LOGICAL DOITREF PARAMETER ( DOITREF = .TRUE. ) * INTEGER ITERMAX PARAMETER ( ITERMAX = 30 ) * DOUBLE PRECISION BWDMAX PARAMETER ( BWDMAX = 1.0E+00 ) * DOUBLE PRECISION NEGONE, ONE PARAMETER ( NEGONE = -1.0D+0, ONE = 1.0D+0 ) * * .. Local Scalars .. INTEGER I, IITER, PTSA, PTSX DOUBLE PRECISION ANRM, CTE, EPS, RNRM, XNRM * * .. External Subroutines .. EXTERNAL DAXPY, DGEMM, DLACPY, DLAG2S, DGETRF, $ DGETRS, $ SGETRF, SGETRS, SLAG2D, XERBLA * .. * .. External Functions .. INTEGER IDAMAX DOUBLE PRECISION DLAMCH, DLANGE EXTERNAL IDAMAX, DLAMCH, DLANGE * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, SQRT * .. * .. Executable Statements .. * INFO = 0 ITER = 0 * * Test the input parameters. * IF( N.LT.0 ) THEN INFO = -1 ELSE IF( NRHS.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -9 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSGESV', -INFO ) RETURN END IF * * Quick return if (N.EQ.0). * IF( N.EQ.0 ) $ RETURN * * Skip single precision iterative refinement if a priori slower * than double precision factorization. * IF( .NOT.DOITREF ) THEN ITER = -1 GO TO 40 END IF * * Compute some constants. * ANRM = DLANGE( 'I', N, N, A, LDA, WORK ) EPS = DLAMCH( 'Epsilon' ) CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX * * Set the indices PTSA, PTSX for referencing SA and SX in SWORK. * PTSA = 1 PTSX = PTSA + N*N * * Convert B from double precision to single precision and store the * result in SX. * CALL DLAG2S( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO ) * IF( INFO.NE.0 ) THEN ITER = -2 GO TO 40 END IF * * Convert A from double precision to single precision and store the * result in SA. * CALL DLAG2S( N, N, A, LDA, SWORK( PTSA ), N, INFO ) * IF( INFO.NE.0 ) THEN ITER = -2 GO TO 40 END IF * * Compute the LU factorization of SA. * CALL SGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO ) * IF( INFO.NE.0 ) THEN ITER = -3 GO TO 40 END IF * * Solve the system SA*SX = SB. * CALL SGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV, $ SWORK( PTSX ), N, INFO ) * * Convert SX back to double precision * CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO ) * * Compute R = B - AX (R is WORK). * CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N ) * CALL DGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, $ A, $ LDA, X, LDX, ONE, WORK, N ) * * Check whether the NRHS normwise backward errors satisfy the * stopping criterion. If yes, set ITER=0 and return. * DO I = 1, NRHS XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) ) RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) ) IF( RNRM.GT.XNRM*CTE ) $ GO TO 10 END DO * * If we are here, the NRHS normwise backward errors satisfy the * stopping criterion. We are good to exit. * ITER = 0 RETURN * 10 CONTINUE * DO 30 IITER = 1, ITERMAX * * Convert R (in WORK) from double precision to single precision * and store the result in SX. * CALL DLAG2S( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO ) * IF( INFO.NE.0 ) THEN ITER = -2 GO TO 40 END IF * * Solve the system SA*SX = SR. * CALL SGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, $ IPIV, $ SWORK( PTSX ), N, INFO ) * * Convert SX back to double precision and update the current * iterate. * CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO ) * DO I = 1, NRHS CALL DAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 ) END DO * * Compute R = B - AX (R is WORK). * CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N ) * CALL DGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, $ NEGONE, $ A, LDA, X, LDX, ONE, WORK, N ) * * Check whether the NRHS normwise backward errors satisfy the * stopping criterion. If yes, set ITER=IITER>0 and return. * DO I = 1, NRHS XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) ) RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) ) IF( RNRM.GT.XNRM*CTE ) $ GO TO 20 END DO * * If we are here, the NRHS normwise backward errors satisfy the * stopping criterion, we are good to exit. * ITER = IITER * RETURN * 20 CONTINUE * 30 CONTINUE * * If we are at this place of the code, this is because we have * performed ITER=ITERMAX iterations and never satisfied the * stopping criterion, set up the ITER flag accordingly and follow up * on double precision routine. * ITER = -ITERMAX - 1 * 40 CONTINUE * * Single-precision iterative refinement failed to converge to a * satisfactory solution, so we resort to double precision. * CALL DGETRF( N, N, A, LDA, IPIV, INFO ) * IF( INFO.NE.0 ) $ RETURN * CALL DLACPY( 'All', N, NRHS, B, LDB, X, LDX ) CALL DGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX, $ INFO ) * RETURN * * End of DSGESV * END