numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dsygst.f | 11190B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
*> \brief \b DSYGST * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DSYGST + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygst.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygst.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygst.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, ITYPE, LDA, LDB, N * .. * .. Array Arguments .. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DSYGST reduces a real symmetric-definite generalized eigenproblem *> to standard form. *> *> If ITYPE = 1, the problem is A*x = lambda*B*x, *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T) *> *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L. *> *> B must have been previously factorized as U**T*U or L*L**T by DPOTRF. *> \endverbatim * * Arguments: * ========== * *> \param[in] ITYPE *> \verbatim *> ITYPE is INTEGER *> = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T); *> = 2 or 3: compute U*A*U**T or L**T*A*L. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangle of A is stored and B is factored as *> U**T*U; *> = 'L': Lower triangle of A is stored and B is factored as *> L*L**T. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A and B. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> On entry, the symmetric matrix A. If UPLO = 'U', the leading *> N-by-N upper triangular part of A contains the upper *> triangular part of the matrix A, and the strictly lower *> triangular part of A is not referenced. If UPLO = 'L', the *> leading N-by-N lower triangular part of A contains the lower *> triangular part of the matrix A, and the strictly upper *> triangular part of A is not referenced. *> *> On exit, if INFO = 0, the transformed matrix, stored in the *> same format as A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in] B *> \verbatim *> B is DOUBLE PRECISION array, dimension (LDB,N) *> The triangular factor from the Cholesky factorization of B, *> as returned by DPOTRF. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup hegst * * ===================================================================== SUBROUTINE DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, ITYPE, LDA, LDB, N * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, HALF PARAMETER ( ONE = 1.0D0, HALF = 0.5D0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER K, KB, NB * .. * .. External Subroutines .. EXTERNAL DSYGS2, DSYMM, DSYR2K, DTRMM, DTRSM, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN INFO = -1 ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSYGST', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Determine the block size for this environment. * NB = ILAENV( 1, 'DSYGST', UPLO, N, -1, -1, -1 ) * IF( NB.LE.1 .OR. NB.GE.N ) THEN * * Use unblocked code * CALL DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO ) ELSE * * Use blocked code * IF( ITYPE.EQ.1 ) THEN IF( UPPER ) THEN * * Compute inv(U**T)*A*inv(U) * DO 10 K = 1, N, NB KB = MIN( N-K+1, NB ) * * Update the upper triangle of A(k:n,k:n) * CALL DSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA, $ B( K, K ), LDB, INFO ) IF( K+KB.LE.N ) THEN CALL DTRSM( 'Left', UPLO, 'Transpose', $ 'Non-unit', $ KB, N-K-KB+1, ONE, B( K, K ), LDB, $ A( K, K+KB ), LDA ) CALL DSYMM( 'Left', UPLO, KB, N-K-KB+1, -HALF, $ A( K, K ), LDA, B( K, K+KB ), LDB, ONE, $ A( K, K+KB ), LDA ) CALL DSYR2K( UPLO, 'Transpose', N-K-KB+1, KB, $ -ONE, $ A( K, K+KB ), LDA, B( K, K+KB ), LDB, $ ONE, A( K+KB, K+KB ), LDA ) CALL DSYMM( 'Left', UPLO, KB, N-K-KB+1, -HALF, $ A( K, K ), LDA, B( K, K+KB ), LDB, ONE, $ A( K, K+KB ), LDA ) CALL DTRSM( 'Right', UPLO, 'No transpose', $ 'Non-unit', KB, N-K-KB+1, ONE, $ B( K+KB, K+KB ), LDB, A( K, K+KB ), $ LDA ) END IF 10 CONTINUE ELSE * * Compute inv(L)*A*inv(L**T) * DO 20 K = 1, N, NB KB = MIN( N-K+1, NB ) * * Update the lower triangle of A(k:n,k:n) * CALL DSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA, $ B( K, K ), LDB, INFO ) IF( K+KB.LE.N ) THEN CALL DTRSM( 'Right', UPLO, 'Transpose', $ 'Non-unit', $ N-K-KB+1, KB, ONE, B( K, K ), LDB, $ A( K+KB, K ), LDA ) CALL DSYMM( 'Right', UPLO, N-K-KB+1, KB, -HALF, $ A( K, K ), LDA, B( K+KB, K ), LDB, ONE, $ A( K+KB, K ), LDA ) CALL DSYR2K( UPLO, 'No transpose', N-K-KB+1, KB, $ -ONE, A( K+KB, K ), LDA, B( K+KB, K ), $ LDB, ONE, A( K+KB, K+KB ), LDA ) CALL DSYMM( 'Right', UPLO, N-K-KB+1, KB, -HALF, $ A( K, K ), LDA, B( K+KB, K ), LDB, ONE, $ A( K+KB, K ), LDA ) CALL DTRSM( 'Left', UPLO, 'No transpose', $ 'Non-unit', N-K-KB+1, KB, ONE, $ B( K+KB, K+KB ), LDB, A( K+KB, K ), $ LDA ) END IF 20 CONTINUE END IF ELSE IF( UPPER ) THEN * * Compute U*A*U**T * DO 30 K = 1, N, NB KB = MIN( N-K+1, NB ) * * Update the upper triangle of A(1:k+kb-1,1:k+kb-1) * CALL DTRMM( 'Left', UPLO, 'No transpose', $ 'Non-unit', $ K-1, KB, ONE, B, LDB, A( 1, K ), LDA ) CALL DSYMM( 'Right', UPLO, K-1, KB, HALF, A( K, $ K ), $ LDA, B( 1, K ), LDB, ONE, A( 1, K ), LDA ) CALL DSYR2K( UPLO, 'No transpose', K-1, KB, ONE, $ A( 1, K ), LDA, B( 1, K ), LDB, ONE, A, $ LDA ) CALL DSYMM( 'Right', UPLO, K-1, KB, HALF, A( K, $ K ), $ LDA, B( 1, K ), LDB, ONE, A( 1, K ), LDA ) CALL DTRMM( 'Right', UPLO, 'Transpose', 'Non-unit', $ K-1, KB, ONE, B( K, K ), LDB, A( 1, K ), $ LDA ) CALL DSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA, $ B( K, K ), LDB, INFO ) 30 CONTINUE ELSE * * Compute L**T*A*L * DO 40 K = 1, N, NB KB = MIN( N-K+1, NB ) * * Update the lower triangle of A(1:k+kb-1,1:k+kb-1) * CALL DTRMM( 'Right', UPLO, 'No transpose', $ 'Non-unit', $ KB, K-1, ONE, B, LDB, A( K, 1 ), LDA ) CALL DSYMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ), $ LDA, B( K, 1 ), LDB, ONE, A( K, 1 ), LDA ) CALL DSYR2K( UPLO, 'Transpose', K-1, KB, ONE, $ A( K, 1 ), LDA, B( K, 1 ), LDB, ONE, A, $ LDA ) CALL DSYMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ), $ LDA, B( K, 1 ), LDB, ONE, A( K, 1 ), LDA ) CALL DTRMM( 'Left', UPLO, 'Transpose', 'Non-unit', $ KB, $ K-1, ONE, B( K, K ), LDB, A( K, 1 ), LDA ) CALL DSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA, $ B( K, K ), LDB, INFO ) 40 CONTINUE END IF END IF END IF RETURN * * End of DSYGST * END