numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dsytri_3x.f | 19424B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
*> \brief \b DSYTRI_3X * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DSYTRI_3X + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytri_3x.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytri_3x.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytri_3x.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, LDA, N, NB * .. * .. Array Arguments .. * INTEGER IPIV( * ) * DOUBLE PRECISION A( LDA, * ), E( * ), WORK( N+NB+1, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> DSYTRI_3X computes the inverse of a real symmetric indefinite *> matrix A using the factorization computed by DSYTRF_RK or DSYTRF_BK: *> *> A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), *> *> where U (or L) is unit upper (or lower) triangular matrix, *> U**T (or L**T) is the transpose of U (or L), P is a permutation *> matrix, P**T is the transpose of P, and D is symmetric and block *> diagonal with 1-by-1 and 2-by-2 diagonal blocks. *> *> This is the blocked version of the algorithm, calling Level 3 BLAS. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the details of the factorization are *> stored as an upper or lower triangular matrix. *> = 'U': Upper triangle of A is stored; *> = 'L': Lower triangle of A is stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> On entry, diagonal of the block diagonal matrix D and *> factors U or L as computed by DSYTRF_RK and DSYTRF_BK: *> a) ONLY diagonal elements of the symmetric block diagonal *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); *> (superdiagonal (or subdiagonal) elements of D *> should be provided on entry in array E), and *> b) If UPLO = 'U': factor U in the superdiagonal part of A. *> If UPLO = 'L': factor L in the subdiagonal part of A. *> *> On exit, if INFO = 0, the symmetric inverse of the original *> matrix. *> If UPLO = 'U': the upper triangular part of the inverse *> is formed and the part of A below the diagonal is not *> referenced; *> If UPLO = 'L': the lower triangular part of the inverse *> is formed and the part of A above the diagonal is not *> referenced. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in] E *> \verbatim *> E is DOUBLE PRECISION array, dimension (N) *> On entry, contains the superdiagonal (or subdiagonal) *> elements of the symmetric block diagonal matrix D *> with 1-by-1 or 2-by-2 diagonal blocks, where *> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced; *> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced. *> *> NOTE: For 1-by-1 diagonal block D(k), where *> 1 <= k <= N, the element E(k) is not referenced in both *> UPLO = 'U' or UPLO = 'L' cases. *> \endverbatim *> *> \param[in] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> Details of the interchanges and the block structure of D *> as determined by DSYTRF_RK or DSYTRF_BK. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (N+NB+1,NB+3). *> \endverbatim *> *> \param[in] NB *> \verbatim *> NB is INTEGER *> Block size. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its *> inverse could not be computed. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup hetri_3x * *> \par Contributors: * ================== *> \verbatim *> *> June 2017, Igor Kozachenko, *> Computer Science Division, *> University of California, Berkeley *> *> \endverbatim * * ===================================================================== SUBROUTINE DSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, $ INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, N, NB * .. * .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION A( LDA, * ), E( * ), WORK( N+NB+1, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER CUT, I, ICOUNT, INVD, IP, K, NNB, J, U11 DOUBLE PRECISION AK, AKKP1, AKP1, D, T, U01_I_J, U01_IP1_J, $ U11_I_J, U11_IP1_J * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL DGEMM, DSYSWAPR, DTRTRI, DTRMM, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MOD * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF * * Quick return if possible * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSYTRI_3X', -INFO ) RETURN END IF IF( N.EQ.0 ) $ RETURN * * Workspace got Non-diag elements of D * DO K = 1, N WORK( K, 1 ) = E( K ) END DO * * Check that the diagonal matrix D is nonsingular. * IF( UPPER ) THEN * * Upper triangular storage: examine D from bottom to top * DO INFO = N, 1, -1 IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO ) $ RETURN END DO ELSE * * Lower triangular storage: examine D from top to bottom. * DO INFO = 1, N IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO ) $ RETURN END DO END IF * INFO = 0 * * Splitting Workspace * U01 is a block ( N, NB+1 ) * The first element of U01 is in WORK( 1, 1 ) * U11 is a block ( NB+1, NB+1 ) * The first element of U11 is in WORK( N+1, 1 ) * U11 = N * * INVD is a block ( N, 2 ) * The first element of INVD is in WORK( 1, INVD ) * INVD = NB + 2 IF( UPPER ) THEN * * Begin Upper * * invA = P * inv(U**T) * inv(D) * inv(U) * P**T. * CALL DTRTRI( UPLO, 'U', N, A, LDA, INFO ) * * inv(D) and inv(D) * inv(U) * K = 1 DO WHILE( K.LE.N ) IF( IPIV( K ).GT.0 ) THEN * 1 x 1 diagonal NNB WORK( K, INVD ) = ONE / A( K, K ) WORK( K, INVD+1 ) = ZERO ELSE * 2 x 2 diagonal NNB T = WORK( K+1, 1 ) AK = A( K, K ) / T AKP1 = A( K+1, K+1 ) / T AKKP1 = WORK( K+1, 1 ) / T D = T*( AK*AKP1-ONE ) WORK( K, INVD ) = AKP1 / D WORK( K+1, INVD+1 ) = AK / D WORK( K, INVD+1 ) = -AKKP1 / D WORK( K+1, INVD ) = WORK( K, INVD+1 ) K = K + 1 END IF K = K + 1 END DO * * inv(U**T) = (inv(U))**T * * inv(U**T) * inv(D) * inv(U) * CUT = N DO WHILE( CUT.GT.0 ) NNB = NB IF( CUT.LE.NNB ) THEN NNB = CUT ELSE ICOUNT = 0 * count negative elements, DO I = CUT+1-NNB, CUT IF( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1 END DO * need a even number for a clear cut IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1 END IF CUT = CUT - NNB * * U01 Block * DO I = 1, CUT DO J = 1, NNB WORK( I, J ) = A( I, CUT+J ) END DO END DO * * U11 Block * DO I = 1, NNB WORK( U11+I, I ) = ONE DO J = 1, I-1 WORK( U11+I, J ) = ZERO END DO DO J = I+1, NNB WORK( U11+I, J ) = A( CUT+I, CUT+J ) END DO END DO * * invD * U01 * I = 1 DO WHILE( I.LE.CUT ) IF( IPIV( I ).GT.0 ) THEN DO J = 1, NNB WORK( I, J ) = WORK( I, INVD ) * WORK( I, J ) END DO ELSE DO J = 1, NNB U01_I_J = WORK( I, J ) U01_IP1_J = WORK( I+1, J ) WORK( I, J ) = WORK( I, INVD ) * U01_I_J $ + WORK( I, INVD+1 ) * U01_IP1_J WORK( I+1, J ) = WORK( I+1, INVD ) * U01_I_J $ + WORK( I+1, INVD+1 ) * U01_IP1_J END DO I = I + 1 END IF I = I + 1 END DO * * invD1 * U11 * I = 1 DO WHILE ( I.LE.NNB ) IF( IPIV( CUT+I ).GT.0 ) THEN DO J = I, NNB WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J) END DO ELSE DO J = I, NNB U11_I_J = WORK(U11+I,J) U11_IP1_J = WORK(U11+I+1,J) WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J) $ + WORK(CUT+I,INVD+1) * WORK(U11+I+1,J) WORK( U11+I+1, J ) = WORK(CUT+I+1,INVD) * U11_I_J $ + WORK(CUT+I+1,INVD+1) * U11_IP1_J END DO I = I + 1 END IF I = I + 1 END DO * * U11**T * invD1 * U11 -> U11 * CALL DTRMM( 'L', 'U', 'T', 'U', NNB, NNB, $ ONE, A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ), $ N+NB+1 ) * DO I = 1, NNB DO J = I, NNB A( CUT+I, CUT+J ) = WORK( U11+I, J ) END DO END DO * * U01**T * invD * U01 -> A( CUT+I, CUT+J ) * CALL DGEMM( 'T', 'N', NNB, NNB, CUT, ONE, A( 1, CUT+1 ), $ LDA, WORK, N+NB+1, ZERO, WORK(U11+1,1), N+NB+1 ) * * U11 = U11**T * invD1 * U11 + U01**T * invD * U01 * DO I = 1, NNB DO J = I, NNB A( CUT+I, CUT+J ) = A( CUT+I, CUT+J ) + WORK(U11+I,J) END DO END DO * * U01 = U00**T * invD0 * U01 * CALL DTRMM( 'L', UPLO, 'T', 'U', CUT, NNB, $ ONE, A, LDA, WORK, N+NB+1 ) * * Update U01 * DO I = 1, CUT DO J = 1, NNB A( I, CUT+J ) = WORK( I, J ) END DO END DO * * Next Block * END DO * * Apply PERMUTATIONS P and P**T: * P * inv(U**T) * inv(D) * inv(U) * P**T. * Interchange rows and columns I and IPIV(I) in reverse order * from the formation order of IPIV vector for Upper case. * * ( We can use a loop over IPIV with increment 1, * since the ABS value of IPIV(I) represents the row (column) * index of the interchange with row (column) i in both 1x1 * and 2x2 pivot cases, i.e. we don't need separate code branches * for 1x1 and 2x2 pivot cases ) * DO I = 1, N IP = ABS( IPIV( I ) ) IF( IP.NE.I ) THEN IF (I .LT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, I , $ IP ) IF (I .GT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, IP , $ I ) END IF END DO * ELSE * * Begin Lower * * inv A = P * inv(L**T) * inv(D) * inv(L) * P**T. * CALL DTRTRI( UPLO, 'U', N, A, LDA, INFO ) * * inv(D) and inv(D) * inv(L) * K = N DO WHILE ( K .GE. 1 ) IF( IPIV( K ).GT.0 ) THEN * 1 x 1 diagonal NNB WORK( K, INVD ) = ONE / A( K, K ) WORK( K, INVD+1 ) = ZERO ELSE * 2 x 2 diagonal NNB T = WORK( K-1, 1 ) AK = A( K-1, K-1 ) / T AKP1 = A( K, K ) / T AKKP1 = WORK( K-1, 1 ) / T D = T*( AK*AKP1-ONE ) WORK( K-1, INVD ) = AKP1 / D WORK( K, INVD ) = AK / D WORK( K, INVD+1 ) = -AKKP1 / D WORK( K-1, INVD+1 ) = WORK( K, INVD+1 ) K = K - 1 END IF K = K - 1 END DO * * inv(L**T) = (inv(L))**T * * inv(L**T) * inv(D) * inv(L) * CUT = 0 DO WHILE( CUT.LT.N ) NNB = NB IF( (CUT + NNB).GT.N ) THEN NNB = N - CUT ELSE ICOUNT = 0 * count negative elements, DO I = CUT + 1, CUT+NNB IF ( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1 END DO * need a even number for a clear cut IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1 END IF * * L21 Block * DO I = 1, N-CUT-NNB DO J = 1, NNB WORK( I, J ) = A( CUT+NNB+I, CUT+J ) END DO END DO * * L11 Block * DO I = 1, NNB WORK( U11+I, I) = ONE DO J = I+1, NNB WORK( U11+I, J ) = ZERO END DO DO J = 1, I-1 WORK( U11+I, J ) = A( CUT+I, CUT+J ) END DO END DO * * invD*L21 * I = N-CUT-NNB DO WHILE( I.GE.1 ) IF( IPIV( CUT+NNB+I ).GT.0 ) THEN DO J = 1, NNB WORK( I, J ) = WORK( CUT+NNB+I, INVD) * WORK( I, J) END DO ELSE DO J = 1, NNB U01_I_J = WORK(I,J) U01_IP1_J = WORK(I-1,J) WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+ $ WORK(CUT+NNB+I,INVD+1)*U01_IP1_J WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+ $ WORK(CUT+NNB+I-1,INVD)*U01_IP1_J END DO I = I - 1 END IF I = I - 1 END DO * * invD1*L11 * I = NNB DO WHILE( I.GE.1 ) IF( IPIV( CUT+I ).GT.0 ) THEN DO J = 1, NNB WORK( U11+I, J ) = WORK( CUT+I, INVD)*WORK(U11+I,J) END DO ELSE DO J = 1, NNB U11_I_J = WORK( U11+I, J ) U11_IP1_J = WORK( U11+I-1, J ) WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J) $ + WORK(CUT+I,INVD+1) * U11_IP1_J WORK( U11+I-1, J ) = WORK(CUT+I-1,INVD+1) * U11_I_J $ + WORK(CUT+I-1,INVD) * U11_IP1_J END DO I = I - 1 END IF I = I - 1 END DO * * L11**T * invD1 * L11 -> L11 * CALL DTRMM( 'L', UPLO, 'T', 'U', NNB, NNB, ONE, $ A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ), $ N+NB+1 ) * DO I = 1, NNB DO J = 1, I A( CUT+I, CUT+J ) = WORK( U11+I, J ) END DO END DO * IF( (CUT+NNB).LT.N ) THEN * * L21**T * invD2*L21 -> A( CUT+I, CUT+J ) * CALL DGEMM( 'T', 'N', NNB, NNB, N-NNB-CUT, ONE, $ A( CUT+NNB+1, CUT+1 ), LDA, WORK, N+NB+1, $ ZERO, WORK( U11+1, 1 ), N+NB+1 ) * * L11 = L11**T * invD1 * L11 + U01**T * invD * U01 * DO I = 1, NNB DO J = 1, I A( CUT+I, CUT+J ) = A( CUT+I, CUT+J )+WORK(U11+I,J) END DO END DO * * L01 = L22**T * invD2 * L21 * CALL DTRMM( 'L', UPLO, 'T', 'U', N-NNB-CUT, NNB, ONE, $ A( CUT+NNB+1, CUT+NNB+1 ), LDA, WORK, $ N+NB+1 ) * * Update L21 * DO I = 1, N-CUT-NNB DO J = 1, NNB A( CUT+NNB+I, CUT+J ) = WORK( I, J ) END DO END DO * ELSE * * L11 = L11**T * invD1 * L11 * DO I = 1, NNB DO J = 1, I A( CUT+I, CUT+J ) = WORK( U11+I, J ) END DO END DO END IF * * Next Block * CUT = CUT + NNB * END DO * * Apply PERMUTATIONS P and P**T: * P * inv(L**T) * inv(D) * inv(L) * P**T. * Interchange rows and columns I and IPIV(I) in reverse order * from the formation order of IPIV vector for Lower case. * * ( We can use a loop over IPIV with increment -1, * since the ABS value of IPIV(I) represents the row (column) * index of the interchange with row (column) i in both 1x1 * and 2x2 pivot cases, i.e. we don't need separate code branches * for 1x1 and 2x2 pivot cases ) * DO I = N, 1, -1 IP = ABS( IPIV( I ) ) IF( IP.NE.I ) THEN IF (I .LT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, I , $ IP ) IF (I .GT. IP) CALL DSYSWAPR( UPLO, N, A, LDA, IP , $ I ) END IF END DO * END IF * RETURN * * End of DSYTRI_3X * END