numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/dtplqt2.f | 8871B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
*> \brief \b DTPLQT2 computes a LQ factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DTPLQT2 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtplqt2.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtplqt2.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtplqt2.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DTPLQT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDB, LDT, N, M, L * .. * .. Array Arguments .. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DTPLQT2 computes a LQ a factorization of a real "triangular-pentagonal" *> matrix C, which is composed of a triangular block A and pentagonal block B, *> using the compact WY representation for Q. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The total number of rows of the matrix B. *> M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix B, and the order of *> the triangular matrix A. *> N >= 0. *> \endverbatim *> *> \param[in] L *> \verbatim *> L is INTEGER *> The number of rows of the lower trapezoidal part of B. *> MIN(M,N) >= L >= 0. See Further Details. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,M) *> On entry, the lower triangular M-by-M matrix A. *> On exit, the elements on and below the diagonal of the array *> contain the lower triangular matrix L. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is DOUBLE PRECISION array, dimension (LDB,N) *> On entry, the pentagonal M-by-N matrix B. The first N-L columns *> are rectangular, and the last L columns are lower trapezoidal. *> On exit, B contains the pentagonal matrix V. See Further Details. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,M). *> \endverbatim *> *> \param[out] T *> \verbatim *> T is DOUBLE PRECISION array, dimension (LDT,M) *> The N-by-N upper triangular factor T of the block reflector. *> See Further Details. *> \endverbatim *> *> \param[in] LDT *> \verbatim *> LDT is INTEGER *> The leading dimension of the array T. LDT >= max(1,M) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup tplqt2 * *> \par Further Details: * ===================== *> *> \verbatim *> *> The input matrix C is a M-by-(M+N) matrix *> *> C = [ A ][ B ] *> *> *> where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal *> matrix consisting of a M-by-(N-L) rectangular matrix B1 left of a M-by-L *> upper trapezoidal matrix B2: *> *> B = [ B1 ][ B2 ] *> [ B1 ] <- M-by-(N-L) rectangular *> [ B2 ] <- M-by-L lower trapezoidal. *> *> The lower trapezoidal matrix B2 consists of the first L columns of a *> N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N). If L=0, *> B is rectangular M-by-N; if M=L=N, B is lower triangular. *> *> The matrix W stores the elementary reflectors H(i) in the i-th row *> above the diagonal (of A) in the M-by-(M+N) input matrix C *> *> C = [ A ][ B ] *> [ A ] <- lower triangular M-by-M *> [ B ] <- M-by-N pentagonal *> *> so that W can be represented as *> *> W = [ I ][ V ] *> [ I ] <- identity, M-by-M *> [ V ] <- M-by-N, same form as B. *> *> Thus, all of information needed for W is contained on exit in B, which *> we call V above. Note that V has the same form as B; that is, *> *> W = [ V1 ][ V2 ] *> [ V1 ] <- M-by-(N-L) rectangular *> [ V2 ] <- M-by-L lower trapezoidal. *> *> The rows of V represent the vectors which define the H(i)'s. *> The (M+N)-by-(M+N) block reflector H is then given by *> *> H = I - W**T * T * W *> *> where W^H is the conjugate transpose of W and T is the upper triangular *> factor of the block reflector. *> \endverbatim *> * ===================================================================== SUBROUTINE DTPLQT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDB, LDT, N, M, L * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER( ONE = 1.0, ZERO = 0.0 ) * .. * .. Local Scalars .. INTEGER I, J, P, MP, NP DOUBLE PRECISION ALPHA * .. * .. External Subroutines .. EXTERNAL DLARFG, DGEMV, DGER, DTRMV, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( L.LT.0 .OR. L.GT.MIN(M,N) ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, M ) ) THEN INFO = -7 ELSE IF( LDT.LT.MAX( 1, M ) ) THEN INFO = -9 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DTPLQT2', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 .OR. M.EQ.0 ) RETURN * DO I = 1, M * * Generate elementary reflector H(I) to annihilate B(I,:) * P = N-L+MIN( L, I ) CALL DLARFG( P+1, A( I, I ), B( I, 1 ), LDB, T( 1, I ) ) IF( I.LT.M ) THEN * * W(M-I:1) := C(I+1:M,I:N) * C(I,I:N) [use W = T(M,:)] * DO J = 1, M-I T( M, J ) = (A( I+J, I )) END DO CALL DGEMV( 'N', M-I, P, ONE, B( I+1, 1 ), LDB, $ B( I, 1 ), LDB, ONE, T( M, 1 ), LDT ) * * C(I+1:M,I:N) = C(I+1:M,I:N) + alpha * C(I,I:N)*W(M-1:1)^H * ALPHA = -(T( 1, I )) DO J = 1, M-I A( I+J, I ) = A( I+J, I ) + ALPHA*(T( M, J )) END DO CALL DGER( M-I, P, ALPHA, T( M, 1 ), LDT, $ B( I, 1 ), LDB, B( I+1, 1 ), LDB ) END IF END DO * DO I = 2, M * * T(I,1:I-1) := C(I:I-1,1:N) * (alpha * C(I,I:N)^H) * ALPHA = -T( 1, I ) DO J = 1, I-1 T( I, J ) = ZERO END DO P = MIN( I-1, L ) NP = MIN( N-L+1, N ) MP = MIN( P+1, M ) * * Triangular part of B2 * DO J = 1, P T( I, J ) = ALPHA*B( I, N-L+J ) END DO CALL DTRMV( 'L', 'N', 'N', P, B( 1, NP ), LDB, $ T( I, 1 ), LDT ) * * Rectangular part of B2 * CALL DGEMV( 'N', I-1-P, L, ALPHA, B( MP, NP ), LDB, $ B( I, NP ), LDB, ZERO, T( I,MP ), LDT ) * * B1 * CALL DGEMV( 'N', I-1, N-L, ALPHA, B, LDB, B( I, 1 ), LDB, $ ONE, T( I, 1 ), LDT ) * * T(1:I-1,I) := T(1:I-1,1:I-1) * T(I,1:I-1) * CALL DTRMV( 'L', 'T', 'N', I-1, T, LDT, T( I, 1 ), LDT ) * * T(I,I) = tau(I) * T( I, I ) = T( 1, I ) T( 1, I ) = ZERO END DO DO I=1,M DO J= I+1,M T(I,J)=T(J,I) T(J,I)= ZERO END DO END DO * * End of DTPLQT2 * END