numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/iparmq.f | 14659B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
*> \brief \b IPARMQ * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download IPARMQ + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/iparmq.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/iparmq.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/iparmq.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * INTEGER FUNCTION IPARMQ( ISPEC, NAME, OPTS, N, ILO, IHI, LWORK ) * * .. Scalar Arguments .. * INTEGER IHI, ILO, ISPEC, LWORK, N * CHARACTER NAME*( * ), OPTS*( * ) * * *> \par Purpose: * ============= *> *> \verbatim *> *> This program sets problem and machine dependent parameters *> useful for xHSEQR and related subroutines for eigenvalue *> problems. It is called whenever *> IPARMQ is called with 12 <= ISPEC <= 16 *> \endverbatim * * Arguments: * ========== * *> \param[in] ISPEC *> \verbatim *> ISPEC is INTEGER *> ISPEC specifies which tunable parameter IPARMQ should *> return. *> *> ISPEC=12: (INMIN) Matrices of order nmin or less *> are sent directly to xLAHQR, the implicit *> double shift QR algorithm. NMIN must be *> at least 11. *> *> ISPEC=13: (INWIN) Size of the deflation window. *> This is best set greater than or equal to *> the number of simultaneous shifts NS. *> Larger matrices benefit from larger deflation *> windows. *> *> ISPEC=14: (INIBL) Determines when to stop nibbling and *> invest in an (expensive) multi-shift QR sweep. *> If the aggressive early deflation subroutine *> finds LD converged eigenvalues from an order *> NW deflation window and LD > (NW*NIBBLE)/100, *> then the next QR sweep is skipped and early *> deflation is applied immediately to the *> remaining active diagonal block. Setting *> IPARMQ(ISPEC=14) = 0 causes TTQRE to skip a *> multi-shift QR sweep whenever early deflation *> finds a converged eigenvalue. Setting *> IPARMQ(ISPEC=14) greater than or equal to 100 *> prevents TTQRE from skipping a multi-shift *> QR sweep. *> *> ISPEC=15: (NSHFTS) The number of simultaneous shifts in *> a multi-shift QR iteration. *> *> ISPEC=16: (IACC22) IPARMQ is set to 0, 1 or 2 with the *> following meanings. *> 0: During the multi-shift QR/QZ sweep, *> blocked eigenvalue reordering, blocked *> Hessenberg-triangular reduction, *> reflections and/or rotations are not *> accumulated when updating the *> far-from-diagonal matrix entries. *> 1: During the multi-shift QR/QZ sweep, *> blocked eigenvalue reordering, blocked *> Hessenberg-triangular reduction, *> reflections and/or rotations are *> accumulated, and matrix-matrix *> multiplication is used to update the *> far-from-diagonal matrix entries. *> 2: During the multi-shift QR/QZ sweep, *> blocked eigenvalue reordering, blocked *> Hessenberg-triangular reduction, *> reflections and/or rotations are *> accumulated, and 2-by-2 block structure *> is exploited during matrix-matrix *> multiplies. *> (If xTRMM is slower than xGEMM, then *> IPARMQ(ISPEC=16)=1 may be more efficient than *> IPARMQ(ISPEC=16)=2 despite the greater level of *> arithmetic work implied by the latter choice.) *> *> ISPEC=17: (ICOST) An estimate of the relative cost of flops *> within the near-the-diagonal shift chase compared *> to flops within the BLAS calls of a QZ sweep. *> \endverbatim *> *> \param[in] NAME *> \verbatim *> NAME is CHARACTER string *> Name of the calling subroutine *> \endverbatim *> *> \param[in] OPTS *> \verbatim *> OPTS is CHARACTER string *> This is a concatenation of the string arguments to *> TTQRE. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> N is the order of the Hessenberg matrix H. *> \endverbatim *> *> \param[in] ILO *> \verbatim *> ILO is INTEGER *> \endverbatim *> *> \param[in] IHI *> \verbatim *> IHI is INTEGER *> It is assumed that H is already upper triangular *> in rows and columns 1:ILO-1 and IHI+1:N. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The amount of workspace available. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup iparmq * *> \par Further Details: * ===================== *> *> \verbatim *> *> Little is known about how best to choose these parameters. *> It is possible to use different values of the parameters *> for each of CHSEQR, DHSEQR, SHSEQR and ZHSEQR. *> *> It is probably best to choose different parameters for *> different matrices and different parameters at different *> times during the iteration, but this has not been *> implemented --- yet. *> *> *> The best choices of most of the parameters depend *> in an ill-understood way on the relative execution *> rate of xLAQR3 and xLAQR5 and on the nature of each *> particular eigenvalue problem. Experiment may be the *> only practical way to determine which choices are most *> effective. *> *> Following is a list of default values supplied by IPARMQ. *> These defaults may be adjusted in order to attain better *> performance in any particular computational environment. *> *> IPARMQ(ISPEC=12) The xLAHQR vs xLAQR0 crossover point. *> Default: 75. (Must be at least 11.) *> *> IPARMQ(ISPEC=13) Recommended deflation window size. *> This depends on ILO, IHI and NS, the *> number of simultaneous shifts returned *> by IPARMQ(ISPEC=15). The default for *> (IHI-ILO+1) <= 500 is NS. The default *> for (IHI-ILO+1) > 500 is 3*NS/2. *> *> IPARMQ(ISPEC=14) Nibble crossover point. Default: 14. *> *> IPARMQ(ISPEC=15) Number of simultaneous shifts, NS. *> a multi-shift QR iteration. *> *> If IHI-ILO+1 is ... *> *> greater than ...but less ... the *> or equal to ... than default is *> *> 0 30 NS = 2+ *> 30 60 NS = 4+ *> 60 150 NS = 10 *> 150 590 NS = ** *> 590 3000 NS = 64 *> 3000 6000 NS = 128 *> 6000 infinity NS = 256 *> *> (+) By default matrices of this order are *> passed to the implicit double shift routine *> xLAHQR. See IPARMQ(ISPEC=12) above. These *> values of NS are used only in case of a rare *> xLAHQR failure. *> *> (**) The asterisks (**) indicate an ad-hoc *> function increasing from 10 to 64. *> *> IPARMQ(ISPEC=16) Select structured matrix multiply. *> (See ISPEC=16 above for details.) *> Default: 3. *> *> IPARMQ(ISPEC=17) Relative cost heuristic for blocksize selection. *> Expressed as a percentage. *> Default: 10. *> \endverbatim *> * ===================================================================== INTEGER FUNCTION IPARMQ( ISPEC, NAME, OPTS, N, ILO, IHI, $ LWORK ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER IHI, ILO, ISPEC, LWORK, N CHARACTER NAME*( * ), OPTS*( * ) * * ================================================================ * .. Parameters .. INTEGER INMIN, INWIN, INIBL, ISHFTS, IACC22, ICOST PARAMETER ( INMIN = 12, INWIN = 13, INIBL = 14, $ ISHFTS = 15, IACC22 = 16, ICOST = 17 ) INTEGER NMIN, K22MIN, KACMIN, NIBBLE, KNWSWP, RCOST PARAMETER ( NMIN = 75, K22MIN = 14, KACMIN = 14, $ NIBBLE = 14, KNWSWP = 500, RCOST = 10 ) REAL TWO PARAMETER ( TWO = 2.0 ) * .. * .. Local Scalars .. INTEGER NH, NS INTEGER I, IC, IZ CHARACTER SUBNAM*6 * .. * .. Intrinsic Functions .. INTRINSIC LOG, MAX, MOD, NINT, REAL * .. * .. Executable Statements .. IF( ( ISPEC.EQ.ISHFTS ) .OR. ( ISPEC.EQ.INWIN ) .OR. $ ( ISPEC.EQ.IACC22 ) ) THEN * * ==== Set the number simultaneous shifts ==== * NH = IHI - ILO + 1 NS = 2 IF( NH.GE.30 ) $ NS = 4 IF( NH.GE.60 ) $ NS = 10 IF( NH.GE.150 ) $ NS = MAX( 10, NH / NINT( LOG( REAL( NH ) ) / LOG( TWO ) ) ) IF( NH.GE.590 ) $ NS = 64 IF( NH.GE.3000 ) $ NS = 128 IF( NH.GE.6000 ) $ NS = 256 NS = MAX( 2, NS-MOD( NS, 2 ) ) END IF * IF( ISPEC.EQ.INMIN ) THEN * * * ===== Matrices of order smaller than NMIN get sent * . to xLAHQR, the classic double shift algorithm. * . This must be at least 11. ==== * IPARMQ = NMIN * ELSE IF( ISPEC.EQ.INIBL ) THEN * * ==== INIBL: skip a multi-shift qr iteration and * . whenever aggressive early deflation finds * . at least (NIBBLE*(window size)/100) deflations. ==== * IPARMQ = NIBBLE * ELSE IF( ISPEC.EQ.ISHFTS ) THEN * * ==== NSHFTS: The number of simultaneous shifts ===== * IPARMQ = NS * ELSE IF( ISPEC.EQ.INWIN ) THEN * * ==== NW: deflation window size. ==== * IF( NH.LE.KNWSWP ) THEN IPARMQ = NS ELSE IPARMQ = 3*NS / 2 END IF * ELSE IF( ISPEC.EQ.IACC22 ) THEN * * ==== IACC22: Whether to accumulate reflections * . before updating the far-from-diagonal elements * . and whether to use 2-by-2 block structure while * . doing it. A small amount of work could be saved * . by making this choice dependent also upon the * . NH=IHI-ILO+1. * * * Convert NAME to upper case if the first character is lower case. * IPARMQ = 0 SUBNAM = NAME IC = ICHAR( SUBNAM( 1: 1 ) ) IZ = ICHAR( 'Z' ) IF( IZ.EQ.90 .OR. IZ.EQ.122 ) THEN * * ASCII character set * IF( IC.GE.97 .AND. IC.LE.122 ) THEN SUBNAM( 1: 1 ) = CHAR( IC-32 ) DO I = 2, 6 IC = ICHAR( SUBNAM( I: I ) ) IF( IC.GE.97 .AND. IC.LE.122 ) $ SUBNAM( I: I ) = CHAR( IC-32 ) END DO END IF * ELSE IF( IZ.EQ.233 .OR. IZ.EQ.169 ) THEN * * EBCDIC character set * IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR. $ ( IC.GE.145 .AND. IC.LE.153 ) .OR. $ ( IC.GE.162 .AND. IC.LE.169 ) ) THEN SUBNAM( 1: 1 ) = CHAR( IC+64 ) DO I = 2, 6 IC = ICHAR( SUBNAM( I: I ) ) IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR. $ ( IC.GE.145 .AND. IC.LE.153 ) .OR. $ ( IC.GE.162 .AND. IC.LE.169 ) )SUBNAM( I: $ I ) = CHAR( IC+64 ) END DO END IF * ELSE IF( IZ.EQ.218 .OR. IZ.EQ.250 ) THEN * * Prime machines: ASCII+128 * IF( IC.GE.225 .AND. IC.LE.250 ) THEN SUBNAM( 1: 1 ) = CHAR( IC-32 ) DO I = 2, 6 IC = ICHAR( SUBNAM( I: I ) ) IF( IC.GE.225 .AND. IC.LE.250 ) $ SUBNAM( I: I ) = CHAR( IC-32 ) END DO END IF END IF * IF( SUBNAM( 2:6 ).EQ.'GGHRD' .OR. $ SUBNAM( 2:6 ).EQ.'GGHD3' ) THEN IPARMQ = 1 IF( NH.GE.K22MIN ) $ IPARMQ = 2 ELSE IF ( SUBNAM( 4:6 ).EQ.'EXC' ) THEN IF( NH.GE.KACMIN ) $ IPARMQ = 1 IF( NH.GE.K22MIN ) $ IPARMQ = 2 ELSE IF ( SUBNAM( 2:6 ).EQ.'HSEQR' .OR. $ SUBNAM( 2:5 ).EQ.'LAQR' ) THEN IF( NS.GE.KACMIN ) $ IPARMQ = 1 IF( NS.GE.K22MIN ) $ IPARMQ = 2 END IF * ELSE IF( ISPEC.EQ.ICOST ) THEN * * === Relative cost of near-the-diagonal chase vs * BLAS updates === * IPARMQ = RCOST ELSE * ===== invalid value of ispec ===== IPARMQ = -1 * END IF * * ==== End of IPARMQ ==== * END