numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/la_constants.f90 | 5029B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
!> \brief \b LA_CONSTANTS is a module for the scaling constants for the compiled Fortran single and double precisions ! ! =========== DOCUMENTATION =========== ! ! Online html documentation available at ! http://www.netlib.org/lapack/explore-html/ ! ! Authors: ! ======== ! !> \author Edward Anderson, Lockheed Martin ! !> \date May 2016 ! !> \ingroup la_constants ! !> \par Contributors: ! ================== !> !> Weslley Pereira, University of Colorado Denver, USA !> Nick Papior, Technical University of Denmark, DK ! !> \par Further Details: ! ===================== !> !> \verbatim !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> Blue, James L. (1978) !> A Portable Fortran Program to Find the Euclidean Norm of a Vector !> ACM Trans Math Softw 4:15--23 !> https://doi.org/10.1145/355769.355771 !> !> \endverbatim ! module LA_CONSTANTS ! -- LAPACK auxiliary module -- ! -- LAPACK is a software package provided by Univ. of Tennessee, -- ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- ! Standard constants for integer, parameter :: sp = kind(1.e0) real(sp), parameter :: szero = 0.0_sp real(sp), parameter :: shalf = 0.5_sp real(sp), parameter :: sone = 1.0_sp real(sp), parameter :: stwo = 2.0_sp real(sp), parameter :: sthree = 3.0_sp real(sp), parameter :: sfour = 4.0_sp real(sp), parameter :: seight = 8.0_sp real(sp), parameter :: sten = 10.0_sp complex(sp), parameter :: czero = ( 0.0_sp, 0.0_sp ) complex(sp), parameter :: chalf = ( 0.5_sp, 0.0_sp ) complex(sp), parameter :: cone = ( 1.0_sp, 0.0_sp ) character*1, parameter :: sprefix = 'S' character*1, parameter :: cprefix = 'C' ! Scaling constants real(sp), parameter :: sulp = epsilon(0._sp) real(sp), parameter :: seps = sulp * 0.5_sp real(sp), parameter :: ssafmin = real(radix(0._sp),sp)**max( & minexponent(0._sp)-1, & 1-maxexponent(0._sp) & ) real(sp), parameter :: ssafmax = sone / ssafmin real(sp), parameter :: ssmlnum = ssafmin / sulp real(sp), parameter :: sbignum = ssafmax * sulp real(sp), parameter :: srtmin = sqrt(ssmlnum) real(sp), parameter :: srtmax = sqrt(sbignum) ! Blue's scaling constants real(sp), parameter :: stsml = real(radix(0._sp), sp)**ceiling( & (minexponent(0._sp) - 1) * 0.5_sp) real(sp), parameter :: stbig = real(radix(0._sp), sp)**floor( & (maxexponent(0._sp) - digits(0._sp) + 1) * 0.5_sp) ! ssml >= 1/s, where s was defined in https://doi.org/10.1145/355769.355771 ! The correction was added in https://doi.org/10.1145/3061665 to scale denormalized numbers correctly real(sp), parameter :: sssml = real(radix(0._sp), sp)**( - floor( & (minexponent(0._sp) - digits(0._sp)) * 0.5_sp)) ! sbig = 1/S, where S was defined in https://doi.org/10.1145/355769.355771 real(sp), parameter :: ssbig = real(radix(0._sp), sp)**( - ceiling( & (maxexponent(0._sp) + digits(0._sp) - 1) * 0.5_sp)) ! Standard constants for integer, parameter :: dp = kind(1.d0) real(dp), parameter :: dzero = 0.0_dp real(dp), parameter :: dhalf = 0.5_dp real(dp), parameter :: done = 1.0_dp real(dp), parameter :: dtwo = 2.0_dp real(dp), parameter :: dthree = 3.0_dp real(dp), parameter :: dfour = 4.0_dp real(dp), parameter :: deight = 8.0_dp real(dp), parameter :: dten = 10.0_dp complex(dp), parameter :: zzero = ( 0.0_dp, 0.0_dp ) complex(dp), parameter :: zhalf = ( 0.5_dp, 0.0_dp ) complex(dp), parameter :: zone = ( 1.0_dp, 0.0_dp ) character*1, parameter :: dprefix = 'D' character*1, parameter :: zprefix = 'Z' ! Scaling constants real(dp), parameter :: dulp = epsilon(0._dp) real(dp), parameter :: deps = dulp * 0.5_dp real(dp), parameter :: dsafmin = real(radix(0._dp),dp)**max( & minexponent(0._dp)-1, & 1-maxexponent(0._dp) & ) real(dp), parameter :: dsafmax = done / dsafmin real(dp), parameter :: dsmlnum = dsafmin / dulp real(dp), parameter :: dbignum = dsafmax * dulp real(dp), parameter :: drtmin = sqrt(dsmlnum) real(dp), parameter :: drtmax = sqrt(dbignum) ! Blue's scaling constants real(dp), parameter :: dtsml = real(radix(0._dp), dp)**ceiling( & (minexponent(0._dp) - 1) * 0.5_dp) real(dp), parameter :: dtbig = real(radix(0._dp), dp)**floor( & (maxexponent(0._dp) - digits(0._dp) + 1) * 0.5_dp) ! ssml >= 1/s, where s was defined in https://doi.org/10.1145/355769.355771 ! The correction was added in https://doi.org/10.1145/3061665 to scale denormalized numbers correctly real(dp), parameter :: dssml = real(radix(0._dp), dp)**( - floor( & (minexponent(0._dp) - digits(0._dp)) * 0.5_dp)) ! sbig = 1/S, where S was defined in https://doi.org/10.1145/355769.355771 real(dp), parameter :: dsbig = real(radix(0._dp), dp)**( - ceiling( & (maxexponent(0._dp) + digits(0._dp) - 1) * 0.5_dp)) end module LA_CONSTANTS