numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/sgebal.f | 11708B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
*> \brief \b SGEBAL * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SGEBAL + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgebal.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgebal.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgebal.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO ) * * .. Scalar Arguments .. * CHARACTER JOB * INTEGER IHI, ILO, INFO, LDA, N * .. * .. Array Arguments .. * REAL A( LDA, * ), SCALE( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SGEBAL balances a general real matrix A. This involves, first, *> permuting A by a similarity transformation to isolate eigenvalues *> in the first 1 to ILO-1 and last IHI+1 to N elements on the *> diagonal; and second, applying a diagonal similarity transformation *> to rows and columns ILO to IHI to make the rows and columns as *> close in norm as possible. Both steps are optional. *> *> Balancing may reduce the 1-norm of the matrix, and improve the *> accuracy of the computed eigenvalues and/or eigenvectors. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOB *> \verbatim *> JOB is CHARACTER*1 *> Specifies the operations to be performed on A: *> = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0 *> for i = 1,...,N; *> = 'P': permute only; *> = 'S': scale only; *> = 'B': both permute and scale. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is REAL array, dimension (LDA,N) *> On entry, the input matrix A. *> On exit, A is overwritten by the balanced matrix. *> If JOB = 'N', A is not referenced. *> See Further Details. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] ILO *> \verbatim *> ILO is INTEGER *> \endverbatim *> \param[out] IHI *> \verbatim *> IHI is INTEGER *> ILO and IHI are set to integers such that on exit *> A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N. *> If JOB = 'N' or 'S', ILO = 1 and IHI = N. *> \endverbatim *> *> \param[out] SCALE *> \verbatim *> SCALE is REAL array, dimension (N) *> Details of the permutations and scaling factors applied to *> A. If P(j) is the index of the row and column interchanged *> with row and column j and D(j) is the scaling factor *> applied to row and column j, then *> SCALE(j) = P(j) for j = 1,...,ILO-1 *> = D(j) for j = ILO,...,IHI *> = P(j) for j = IHI+1,...,N. *> The order in which the interchanges are made is N to IHI+1, *> then 1 to ILO-1. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup gebal * *> \par Further Details: * ===================== *> *> \verbatim *> *> The permutations consist of row and column interchanges which put *> the matrix in the form *> *> ( T1 X Y ) *> P A P = ( 0 B Z ) *> ( 0 0 T2 ) *> *> where T1 and T2 are upper triangular matrices whose eigenvalues lie *> along the diagonal. The column indices ILO and IHI mark the starting *> and ending columns of the submatrix B. Balancing consists of applying *> a diagonal similarity transformation inv(D) * B * D to make the *> 1-norms of each row of B and its corresponding column nearly equal. *> The output matrix is *> *> ( T1 X*D Y ) *> ( 0 inv(D)*B*D inv(D)*Z ). *> ( 0 0 T2 ) *> *> Information about the permutations P and the diagonal matrix D is *> returned in the vector SCALE. *> *> This subroutine is based on the EISPACK routine BALANC. *> *> Modified by Tzu-Yi Chen, Computer Science Division, University of *> California at Berkeley, USA *> *> Refactored by Evert Provoost, Department of Computer Science, *> KU Leuven, Belgium *> \endverbatim *> * ===================================================================== SUBROUTINE SGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER JOB INTEGER IHI, ILO, INFO, LDA, N * .. * .. Array Arguments .. REAL A( LDA, * ), SCALE( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) REAL SCLFAC PARAMETER ( SCLFAC = 2.0E+0 ) REAL FACTOR PARAMETER ( FACTOR = 0.95E+0 ) * .. * .. Local Scalars .. LOGICAL NOCONV, CANSWAP INTEGER I, ICA, IRA, J, K, L REAL C, CA, F, G, R, RA, S, SFMAX1, SFMAX2, SFMIN1, $ SFMIN2 * .. * .. External Functions .. LOGICAL SISNAN, LSAME INTEGER ISAMAX REAL SLAMCH, SNRM2 EXTERNAL SISNAN, LSAME, ISAMAX, SLAMCH, $ SNRM2 * .. * .. External Subroutines .. EXTERNAL SSCAL, SSWAP, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. * Test the input parameters * INFO = 0 IF( .NOT.LSAME( JOB, 'N' ) .AND. $ .NOT.LSAME( JOB, 'P' ) .AND. $ .NOT.LSAME( JOB, 'S' ) .AND. $ .NOT.LSAME( JOB, 'B' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGEBAL', -INFO ) RETURN END IF * * Quick returns. * IF( N.EQ.0 ) THEN ILO = 1 IHI = 0 RETURN END IF * IF( LSAME( JOB, 'N' ) ) THEN DO I = 1, N SCALE( I ) = ONE END DO ILO = 1 IHI = N RETURN END IF * * Permutation to isolate eigenvalues if possible. * K = 1 L = N * IF( .NOT.LSAME( JOB, 'S' ) ) THEN * * Row and column exchange. * NOCONV = .TRUE. DO WHILE( NOCONV ) * * Search for rows isolating an eigenvalue and push them down. * NOCONV = .FALSE. DO I = L, 1, -1 CANSWAP = .TRUE. DO J = 1, L IF( I.NE.J .AND. A( I, J ).NE.ZERO ) THEN CANSWAP = .FALSE. EXIT END IF END DO * IF( CANSWAP ) THEN SCALE( L ) = REAL( I ) IF( I.NE.L ) THEN CALL SSWAP( L, A( 1, I ), 1, A( 1, L ), 1 ) CALL SSWAP( N-K+1, A( I, K ), LDA, A( L, K ), $ LDA ) END IF NOCONV = .TRUE. * IF( L.EQ.1 ) THEN ILO = 1 IHI = 1 RETURN END IF * L = L - 1 END IF END DO * END DO NOCONV = .TRUE. DO WHILE( NOCONV ) * * Search for columns isolating an eigenvalue and push them left. * NOCONV = .FALSE. DO J = K, L CANSWAP = .TRUE. DO I = K, L IF( I.NE.J .AND. A( I, J ).NE.ZERO ) THEN CANSWAP = .FALSE. EXIT END IF END DO * IF( CANSWAP ) THEN SCALE( K ) = REAL( J ) IF( J.NE.K ) THEN CALL SSWAP( L, A( 1, J ), 1, A( 1, K ), 1 ) CALL SSWAP( N-K+1, A( J, K ), LDA, A( K, K ), $ LDA ) END IF NOCONV = .TRUE. * K = K + 1 END IF END DO * END DO * END IF * * Initialize SCALE for non-permuted submatrix. * DO I = K, L SCALE( I ) = ONE END DO * * If we only had to permute, we are done. * IF( LSAME( JOB, 'P' ) ) THEN ILO = K IHI = L RETURN END IF * * Balance the submatrix in rows K to L. * * Iterative loop for norm reduction. * SFMIN1 = SLAMCH( 'S' ) / SLAMCH( 'P' ) SFMAX1 = ONE / SFMIN1 SFMIN2 = SFMIN1*SCLFAC SFMAX2 = ONE / SFMIN2 * NOCONV = .TRUE. DO WHILE( NOCONV ) NOCONV = .FALSE. * DO I = K, L * C = SNRM2( L-K+1, A( K, I ), 1 ) R = SNRM2( L-K+1, A( I, K ), LDA ) ICA = ISAMAX( L, A( 1, I ), 1 ) CA = ABS( A( ICA, I ) ) IRA = ISAMAX( N-K+1, A( I, K ), LDA ) RA = ABS( A( I, IRA+K-1 ) ) * * Guard against zero C or R due to underflow. * IF( C.EQ.ZERO .OR. R.EQ.ZERO ) CYCLE * * Exit if NaN to avoid infinite loop * IF( SISNAN( C+CA+R+RA ) ) THEN INFO = -3 CALL XERBLA( 'SGEBAL', -INFO ) RETURN END IF * G = R / SCLFAC F = ONE S = C + R * DO WHILE( C.LT.G .AND. MAX( F, C, CA ).LT.SFMAX2 .AND. $ MIN( R, G, RA ).GT.SFMIN2 ) F = F*SCLFAC C = C*SCLFAC CA = CA*SCLFAC R = R / SCLFAC G = G / SCLFAC RA = RA / SCLFAC END DO * G = C / SCLFAC * DO WHILE( G.GE.R .AND. MAX( R, RA ).LT.SFMAX2 .AND. $ MIN( F, C, G, CA ).GT.SFMIN2 ) F = F / SCLFAC C = C / SCLFAC G = G / SCLFAC CA = CA / SCLFAC R = R*SCLFAC RA = RA*SCLFAC END DO * * Now balance. * IF( ( C+R ).GE.FACTOR*S ) CYCLE IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN IF( F*SCALE( I ).LE.SFMIN1 ) CYCLE END IF IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN IF( SCALE( I ).GE.SFMAX1 / F ) CYCLE END IF G = ONE / F SCALE( I ) = SCALE( I )*F NOCONV = .TRUE. * CALL SSCAL( N-K+1, G, A( I, K ), LDA ) CALL SSCAL( L, F, A( 1, I ), 1 ) * END DO * END DO * ILO = K IHI = L * RETURN * * End of SGEBAL * END