numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/sgejsv.f 73167B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
*> \brief \b SGEJSV
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGEJSV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgejsv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgejsv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgejsv.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
*                          M, N, A, LDA, SVA, U, LDU, V, LDV,
*                          WORK, LWORK, IWORK, INFO )
*
*       .. Scalar Arguments ..
*       IMPLICIT    NONE
*       INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       REAL        A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
*      $            WORK( LWORK )
*       INTEGER     IWORK( * )
*       CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SGEJSV computes the singular value decomposition (SVD) of a real M-by-N
*> matrix [A], where M >= N. The SVD of [A] is written as
*>
*>              [A] = [U] * [SIGMA] * [V]^t,
*>
*> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
*> diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and
*> [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are
*> the singular values of [A]. The columns of [U] and [V] are the left and
*> the right singular vectors of [A], respectively. The matrices [U] and [V]
*> are computed and stored in the arrays U and V, respectively. The diagonal
*> of [SIGMA] is computed and stored in the array SVA.
*> SGEJSV can sometimes compute tiny singular values and their singular vectors much
*> more accurately than other SVD routines, see below under Further Details.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBA
*> \verbatim
*>          JOBA is CHARACTER*1
*>         Specifies the level of accuracy:
*>       = 'C': This option works well (high relative accuracy) if A = B * D,
*>              with well-conditioned B and arbitrary diagonal matrix D.
*>              The accuracy cannot be spoiled by COLUMN scaling. The
*>              accuracy of the computed output depends on the condition of
*>              B, and the procedure aims at the best theoretical accuracy.
*>              The relative error max_{i=1:N}|d sigma_i| / sigma_i is
*>              bounded by f(M,N)*epsilon* cond(B), independent of D.
*>              The input matrix is preprocessed with the QRF with column
*>              pivoting. This initial preprocessing and preconditioning by
*>              a rank revealing QR factorization is common for all values of
*>              JOBA. Additional actions are specified as follows:
*>       = 'E': Computation as with 'C' with an additional estimate of the
*>              condition number of B. It provides a realistic error bound.
*>       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
*>              D1, D2, and well-conditioned matrix C, this option gives
*>              higher accuracy than the 'C' option. If the structure of the
*>              input matrix is not known, and relative accuracy is
*>              desirable, then this option is advisable. The input matrix A
*>              is preprocessed with QR factorization with FULL (row and
*>              column) pivoting.
*>       = 'G': Computation as with 'F' with an additional estimate of the
*>              condition number of B, where A=D*B. If A has heavily weighted
*>              rows, then using this condition number gives too pessimistic
*>              error bound.
*>       = 'A': Small singular values are the noise and the matrix is treated
*>              as numerically rank deficient. The error in the computed
*>              singular values is bounded by f(m,n)*epsilon*||A||.
*>              The computed SVD A = U * S * V^t restores A up to
*>              f(m,n)*epsilon*||A||.
*>              This gives the procedure the licence to discard (set to zero)
*>              all singular values below N*epsilon*||A||.
*>       = 'R': Similar as in 'A'. Rank revealing property of the initial
*>              QR factorization is used do reveal (using triangular factor)
*>              a gap sigma_{r+1} < epsilon * sigma_r in which case the
*>              numerical RANK is declared to be r. The SVD is computed with
*>              absolute error bounds, but more accurately than with 'A'.
*> \endverbatim
*>
*> \param[in] JOBU
*> \verbatim
*>          JOBU is CHARACTER*1
*>         Specifies whether to compute the columns of U:
*>       = 'U': N columns of U are returned in the array U.
*>       = 'F': full set of M left sing. vectors is returned in the array U.
*>       = 'W': U may be used as workspace of length M*N. See the description
*>              of U.
*>       = 'N': U is not computed.
*> \endverbatim
*>
*> \param[in] JOBV
*> \verbatim
*>          JOBV is CHARACTER*1
*>         Specifies whether to compute the matrix V:
*>       = 'V': N columns of V are returned in the array V; Jacobi rotations
*>              are not explicitly accumulated.
*>       = 'J': N columns of V are returned in the array V, but they are
*>              computed as the product of Jacobi rotations. This option is
*>              allowed only if JOBU .NE. 'N', i.e. in computing the full SVD.
*>       = 'W': V may be used as workspace of length N*N. See the description
*>              of V.
*>       = 'N': V is not computed.
*> \endverbatim
*>
*> \param[in] JOBR
*> \verbatim
*>          JOBR is CHARACTER*1
*>         Specifies the RANGE for the singular values. Issues the licence to
*>         set to zero small positive singular values if they are outside
*>         specified range. If A .NE. 0 is scaled so that the largest singular
*>         value of c*A is around SQRT(BIG), BIG=SLAMCH('O'), then JOBR issues
*>         the licence to kill columns of A whose norm in c*A is less than
*>         SQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN,
*>         where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E').
*>       = 'N': Do not kill small columns of c*A. This option assumes that
*>              BLAS and QR factorizations and triangular solvers are
*>              implemented to work in that range. If the condition of A
*>              is greater than BIG, use SGESVJ.
*>       = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)]
*>              (roughly, as described above). This option is recommended.
*>                                             ===========================
*>         For computing the singular values in the FULL range [SFMIN,BIG]
*>         use SGESVJ.
*> \endverbatim
*>
*> \param[in] JOBT
*> \verbatim
*>          JOBT is CHARACTER*1
*>         If the matrix is square then the procedure may determine to use
*>         transposed A if A^t seems to be better with respect to convergence.
*>         If the matrix is not square, JOBT is ignored. This is subject to
*>         changes in the future.
*>         The decision is based on two values of entropy over the adjoint
*>         orbit of A^t * A. See the descriptions of WORK(6) and WORK(7).
*>       = 'T': transpose if entropy test indicates possibly faster
*>         convergence of Jacobi process if A^t is taken as input. If A is
*>         replaced with A^t, then the row pivoting is included automatically.
*>       = 'N': do not speculate.
*>         This option can be used to compute only the singular values, or the
*>         full SVD (U, SIGMA and V). For only one set of singular vectors
*>         (U or V), the caller should provide both U and V, as one of the
*>         matrices is used as workspace if the matrix A is transposed.
*>         The implementer can easily remove this constraint and make the
*>         code more complicated. See the descriptions of U and V.
*> \endverbatim
*>
*> \param[in] JOBP
*> \verbatim
*>          JOBP is CHARACTER*1
*>         Issues the licence to introduce structured perturbations to drown
*>         denormalized numbers. This licence should be active if the
*>         denormals are poorly implemented, causing slow computation,
*>         especially in cases of fast convergence (!). For details see [1,2].
*>         For the sake of simplicity, this perturbations are included only
*>         when the full SVD or only the singular values are requested. The
*>         implementer/user can easily add the perturbation for the cases of
*>         computing one set of singular vectors.
*>       = 'P': introduce perturbation
*>       = 'N': do not perturb
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>         The number of rows of the input matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>         The number of columns of the input matrix A. M >= N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          On entry, the M-by-N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] SVA
*> \verbatim
*>          SVA is REAL array, dimension (N)
*>          On exit,
*>          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
*>            computation SVA contains Euclidean column norms of the
*>            iterated matrices in the array A.
*>          - For WORK(1) .NE. WORK(2): The singular values of A are
*>            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
*>            sigma_max(A) overflows or if small singular values have been
*>            saved from underflow by scaling the input matrix A.
*>          - If JOBR='R' then some of the singular values may be returned
*>            as exact zeros obtained by "set to zero" because they are
*>            below the numerical rank threshold or are denormalized numbers.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*>          U is REAL array, dimension ( LDU, N ) or ( LDU, M )
*>          If JOBU = 'U', then U contains on exit the M-by-N matrix of
*>                         the left singular vectors.
*>          If JOBU = 'F', then U contains on exit the M-by-M matrix of
*>                         the left singular vectors, including an ONB
*>                         of the orthogonal complement of the Range(A).
*>          If JOBU = 'W'  .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N),
*>                         then U is used as workspace if the procedure
*>                         replaces A with A^t. In that case, [V] is computed
*>                         in U as left singular vectors of A^t and then
*>                         copied back to the V array. This 'W' option is just
*>                         a reminder to the caller that in this case U is
*>                         reserved as workspace of length N*N.
*>          If JOBU = 'N'  U is not referenced, unless JOBT='T'.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>          The leading dimension of the array U,  LDU >= 1.
*>          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M.
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*>          V is REAL array, dimension ( LDV, N )
*>          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
*>                         the right singular vectors;
*>          If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N),
*>                         then V is used as workspace if the procedure
*>                         replaces A with A^t. In that case, [U] is computed
*>                         in V as right singular vectors of A^t and then
*>                         copied back to the U array. This 'W' option is just
*>                         a reminder to the caller that in this case V is
*>                         reserved as workspace of length N*N.
*>          If JOBV = 'N'  V is not referenced, unless JOBT='T'.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*>          LDV is INTEGER
*>          The leading dimension of the array V,  LDV >= 1.
*>          If JOBV = 'V' or 'J' or 'W', then LDV >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (MAX(7,LWORK))
*>          On exit,
*>          WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such
*>                    that SCALE*SVA(1:N) are the computed singular values
*>                    of A. (See the description of SVA().)
*>          WORK(2) = See the description of WORK(1).
*>          WORK(3) = SCONDA is an estimate for the condition number of
*>                    column equilibrated A. (If JOBA = 'E' or 'G')
*>                    SCONDA is an estimate of SQRT(||(R^t * R)^(-1)||_1).
*>                    It is computed using SPOCON. It holds
*>                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
*>                    where R is the triangular factor from the QRF of A.
*>                    However, if R is truncated and the numerical rank is
*>                    determined to be strictly smaller than N, SCONDA is
*>                    returned as -1, thus indicating that the smallest
*>                    singular values might be lost.
*>
*>          If full SVD is needed, the following two condition numbers are
*>          useful for the analysis of the algorithm. They are provided for
*>          a developer/implementer who is familiar with the details of
*>          the method.
*>
*>          WORK(4) = an estimate of the scaled condition number of the
*>                    triangular factor in the first QR factorization.
*>          WORK(5) = an estimate of the scaled condition number of the
*>                    triangular factor in the second QR factorization.
*>          The following two parameters are computed if JOBT = 'T'.
*>          They are provided for a developer/implementer who is familiar
*>          with the details of the method.
*>
*>          WORK(6) = the entropy of A^t*A :: this is the Shannon entropy
*>                    of diag(A^t*A) / Trace(A^t*A) taken as point in the
*>                    probability simplex.
*>          WORK(7) = the entropy of A*A^t.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          Length of WORK to confirm proper allocation of work space.
*>          LWORK depends on the job:
*>
*>          If only SIGMA is needed ( JOBU = 'N', JOBV = 'N' ) and
*>            -> .. no scaled condition estimate required (JOBE = 'N'):
*>               LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement.
*>               ->> For optimal performance (blocked code) the optimal value
*>               is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal
*>               block size for SGEQP3 and SGEQRF.
*>               In general, optimal LWORK is computed as
*>               LWORK >= max(2*M+N,N+LWORK(SGEQP3),N+LWORK(SGEQRF), 7).
*>            -> .. an estimate of the scaled condition number of A is
*>               required (JOBA='E', 'G'). In this case, LWORK is the maximum
*>               of the above and N*N+4*N, i.e. LWORK >= max(2*M+N,N*N+4*N,7).
*>               ->> For optimal performance (blocked code) the optimal value
*>               is LWORK >= max(2*M+N,3*N+(N+1)*NB, N*N+4*N, 7).
*>               In general, the optimal length LWORK is computed as
*>               LWORK >= max(2*M+N,N+LWORK(SGEQP3),N+LWORK(SGEQRF),
*>                                                     N+N*N+LWORK(SPOCON),7).
*>
*>          If SIGMA and the right singular vectors are needed (JOBV = 'V'),
*>            -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7).
*>            -> For optimal performance, LWORK >= max(2*M+N,3*N+(N+1)*NB,7),
*>               where NB is the optimal block size for SGEQP3, SGEQRF, SGELQF,
*>               SORMLQ. In general, the optimal length LWORK is computed as
*>               LWORK >= max(2*M+N,N+LWORK(SGEQP3), N+LWORK(SPOCON),
*>                       N+LWORK(SGELQF), 2*N+LWORK(SGEQRF), N+LWORK(SORMLQ)).
*>
*>          If SIGMA and the left singular vectors are needed
*>            -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7).
*>            -> For optimal performance:
*>               if JOBU = 'U' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,7),
*>               if JOBU = 'F' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,N+M*NB,7),
*>               where NB is the optimal block size for SGEQP3, SGEQRF, SORMQR.
*>               In general, the optimal length LWORK is computed as
*>               LWORK >= max(2*M+N,N+LWORK(SGEQP3),N+LWORK(SPOCON),
*>                        2*N+LWORK(SGEQRF), N+LWORK(SORMQR)).
*>               Here LWORK(SORMQR) equals N*NB (for JOBU = 'U') or
*>               M*NB (for JOBU = 'F').
*>
*>          If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and
*>            -> if JOBV = 'V'
*>               the minimal requirement is LWORK >= max(2*M+N,6*N+2*N*N).
*>            -> if JOBV = 'J' the minimal requirement is
*>               LWORK >= max(2*M+N, 4*N+N*N,2*N+N*N+6).
*>            -> For optimal performance, LWORK should be additionally
*>               larger than N+M*NB, where NB is the optimal block size
*>               for SORMQR.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (MAX(3,M+3*N)).
*>          On exit,
*>          IWORK(1) = the numerical rank determined after the initial
*>                     QR factorization with pivoting. See the descriptions
*>                     of JOBA and JOBR.
*>          IWORK(2) = the number of the computed nonzero singular values
*>          IWORK(3) = if nonzero, a warning message:
*>                     If IWORK(3) = 1 then some of the column norms of A
*>                     were denormalized floats. The requested high accuracy
*>                     is not warranted by the data.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>           < 0:  if INFO = -i, then the i-th argument had an illegal value.
*>           = 0:  successful exit;
*>           > 0:  SGEJSV  did not converge in the maximal allowed number
*>                 of sweeps. The computed values may be inaccurate.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup gejsv
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  SGEJSV implements a preconditioned Jacobi SVD algorithm. It uses SGEQP3,
*>  SGEQRF, and SGELQF as preprocessors and preconditioners. Optionally, an
*>  additional row pivoting can be used as a preprocessor, which in some
*>  cases results in much higher accuracy. An example is matrix A with the
*>  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
*>  diagonal matrices and C is well-conditioned matrix. In that case, complete
*>  pivoting in the first QR factorizations provides accuracy dependent on the
*>  condition number of C, and independent of D1, D2. Such higher accuracy is
*>  not completely understood theoretically, but it works well in practice.
*>  Further, if A can be written as A = B*D, with well-conditioned B and some
*>  diagonal D, then the high accuracy is guaranteed, both theoretically and
*>  in software, independent of D. For more details see [1], [2].
*>     The computational range for the singular values can be the full range
*>  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
*>  & LAPACK routines called by SGEJSV are implemented to work in that range.
*>  If that is not the case, then the restriction for safe computation with
*>  the singular values in the range of normalized IEEE numbers is that the
*>  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
*>  overflow. This code (SGEJSV) is best used in this restricted range,
*>  meaning that singular values of magnitude below ||A||_2 / SLAMCH('O') are
*>  returned as zeros. See JOBR for details on this.
*>     Further, this implementation is somewhat slower than the one described
*>  in [1,2] due to replacement of some non-LAPACK components, and because
*>  the choice of some tuning parameters in the iterative part (SGESVJ) is
*>  left to the implementer on a particular machine.
*>     The rank revealing QR factorization (in this code: SGEQP3) should be
*>  implemented as in [3]. We have a new version of SGEQP3 under development
*>  that is more robust than the current one in LAPACK, with a cleaner cut in
*>  rank deficient cases. It will be available in the SIGMA library [4].
*>  If M is much larger than N, it is obvious that the initial QRF with
*>  column pivoting can be preprocessed by the QRF without pivoting. That
*>  well known trick is not used in SGEJSV because in some cases heavy row
*>  weighting can be treated with complete pivoting. The overhead in cases
*>  M much larger than N is then only due to pivoting, but the benefits in
*>  terms of accuracy have prevailed. The implementer/user can incorporate
*>  this extra QRF step easily. The implementer can also improve data movement
*>  (matrix transpose, matrix copy, matrix transposed copy) - this
*>  implementation of SGEJSV uses only the simplest, naive data movement.
*> \endverbatim
*
*> \par Contributors:
*  ==================
*>
*>  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
*
*> \par References:
*  ================
*>
*> \verbatim
*>
*> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
*>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
*>     LAPACK Working note 169.
*> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
*>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
*>     LAPACK Working note 170.
*> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
*>     factorization software - a case study.
*>     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
*>     LAPACK Working note 176.
*> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
*>     QSVD, (H,K)-SVD computations.
*>     Department of Mathematics, University of Zagreb, 2008.
*> \endverbatim
*
*>  \par Bugs, examples and comments:
*   =================================
*>
*>  Please report all bugs and send interesting examples and/or comments to
*>  drmac@math.hr. Thank you.
*>
*  =====================================================================
      SUBROUTINE SGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
     $                   M, N, A, LDA, SVA, U, LDU, V, LDV,
     $                   WORK, LWORK, IWORK, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      IMPLICIT    NONE
      INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL        A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
     $            WORK( LWORK )
      INTEGER     IWORK( * )
      CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
*     ..
*
*  ===========================================================================
*
*     .. Local Parameters ..
      REAL        ZERO,         ONE
      PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      REAL    AAPP,   AAQQ,   AATMAX, AATMIN, BIG,    BIG1,   COND_OK,
     $        CONDR1, CONDR2, ENTRA,  ENTRAT, EPSLN,  MAXPRJ, SCALEM,
     $        SCONDA, SFMIN,  SMALL,  TEMP1,  USCAL1, USCAL2, XSC
      INTEGER IERR,   N1,     NR,     NUMRANK,        p, q,   WARNING
      LOGICAL ALMORT, DEFR,   ERREST, GOSCAL, JRACC,  KILL,   LSVEC,
     $        L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN,
     $        NOSCAL, ROWPIV, RSVEC,  TRANSP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC ABS, ALOG, MAX, MIN, FLOAT, NINT, SIGN, SQRT
*     ..
*     .. External Functions ..
      REAL      SLAMCH, SNRM2
      INTEGER   ISAMAX
      LOGICAL   LSAME
      EXTERNAL  ISAMAX, LSAME, SLAMCH, SNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL  SCOPY,  SGELQF, SGEQP3, SGEQRF, SLACPY,
     $                   SLASCL,
     $          SLASET, SLASSQ, SLASWP, SORGQR, SORMLQ,
     $          SORMQR, SPOCON, SSCAL,  SSWAP,  STRSM,  XERBLA
*
      EXTERNAL  SGESVJ
*     ..
*
*     Test the input arguments
*
      LSVEC  = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
      JRACC  = LSAME( JOBV, 'J' )
      RSVEC  = LSAME( JOBV, 'V' ) .OR. JRACC
      ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
      L2RANK = LSAME( JOBA, 'R' )
      L2ABER = LSAME( JOBA, 'A' )
      ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
      L2TRAN = LSAME( JOBT, 'T' )
      L2KILL = LSAME( JOBR, 'R' )
      DEFR   = LSAME( JOBR, 'N' )
      L2PERT = LSAME( JOBP, 'P' )
*
      IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
     $     ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
         INFO = - 1
      ELSE IF ( .NOT.( LSVEC  .OR. LSAME( JOBU, 'N' ) .OR.
     $                             LSAME( JOBU, 'W' )) ) THEN
         INFO = - 2
      ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
     $   LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN
         INFO = - 3
      ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) )    THEN
         INFO = - 4
      ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN
         INFO = - 5
      ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
         INFO = - 6
      ELSE IF ( M .LT. 0 ) THEN
         INFO = - 7
      ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
         INFO = - 8
      ELSE IF ( LDA .LT. M ) THEN
         INFO = - 10
      ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
         INFO = - 13
      ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
         INFO = - 15
      ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND.
     $                           (LWORK .LT. MAX(7,4*N+1,2*M+N))) .OR.
     $ (.NOT.(LSVEC .OR. RSVEC) .AND. ERREST .AND.
     $                         (LWORK .LT. MAX(7,4*N+N*N,2*M+N))) .OR.
     $ (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1)))
     $ .OR.
     $ (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1)))
     $ .OR.
     $ (LSVEC .AND. RSVEC .AND. (.NOT.JRACC) .AND.
     $                          (LWORK.LT.MAX(2*M+N,6*N+2*N*N)))
     $ .OR. (LSVEC .AND. RSVEC .AND. JRACC .AND.
     $                          LWORK.LT.MAX(2*M+N,4*N+N*N,2*N+N*N+6)))
     $   THEN
         INFO = - 17
      ELSE
*        #:)
         INFO = 0
      END IF
*
      IF ( INFO .NE. 0 ) THEN
*       #:(
         CALL XERBLA( 'SGEJSV', - INFO )
         RETURN
      END IF
*
*     Quick return for void matrix (Y3K safe)
* #:)
      IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
         IWORK(1:3) = 0
         WORK(1:7) = 0
         RETURN
      ENDIF
*
*     Determine whether the matrix U should be M x N or M x M
*
      IF ( LSVEC ) THEN
         N1 = N
         IF ( LSAME( JOBU, 'F' ) ) N1 = M
      END IF
*
*     Set numerical parameters
*
*!    NOTE: Make sure SLAMCH() does not fail on the target architecture.
*
      EPSLN = SLAMCH('Epsilon')
      SFMIN = SLAMCH('SafeMinimum')
      SMALL = SFMIN / EPSLN
      BIG   = SLAMCH('O')
*     BIG   = ONE / SFMIN
*
*     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
*
*(!)  If necessary, scale SVA() to protect the largest norm from
*     overflow. It is possible that this scaling pushes the smallest
*     column norm left from the underflow threshold (extreme case).
*
      SCALEM  = ONE / SQRT(FLOAT(M)*FLOAT(N))
      NOSCAL  = .TRUE.
      GOSCAL  = .TRUE.
      DO 1874 p = 1, N
         AAPP = ZERO
         AAQQ = ONE
         CALL SLASSQ( M, A(1,p), 1, AAPP, AAQQ )
         IF ( AAPP .GT. BIG ) THEN
            INFO = - 9
            CALL XERBLA( 'SGEJSV', -INFO )
            RETURN
         END IF
         AAQQ = SQRT(AAQQ)
         IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL  ) THEN
            SVA(p)  = AAPP * AAQQ
         ELSE
            NOSCAL  = .FALSE.
            SVA(p)  = AAPP * ( AAQQ * SCALEM )
            IF ( GOSCAL ) THEN
               GOSCAL = .FALSE.
               CALL SSCAL( p-1, SCALEM, SVA, 1 )
            END IF
         END IF
 1874 CONTINUE
*
      IF ( NOSCAL ) SCALEM = ONE
*
      AAPP = ZERO
      AAQQ = BIG
      DO 4781 p = 1, N
         AAPP = MAX( AAPP, SVA(p) )
         IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
 4781 CONTINUE
*
*     Quick return for zero M x N matrix
* #:)
      IF ( AAPP .EQ. ZERO ) THEN
         IF ( LSVEC ) CALL SLASET( 'G', M, N1, ZERO, ONE, U, LDU )
         IF ( RSVEC ) CALL SLASET( 'G', N, N,  ZERO, ONE, V, LDV )
         WORK(1) = ONE
         WORK(2) = ONE
         IF ( ERREST ) WORK(3) = ONE
         IF ( LSVEC .AND. RSVEC ) THEN
            WORK(4) = ONE
            WORK(5) = ONE
         END IF
         IF ( L2TRAN ) THEN
            WORK(6) = ZERO
            WORK(7) = ZERO
         END IF
         IWORK(1) = 0
         IWORK(2) = 0
         IWORK(3) = 0
         RETURN
      END IF
*
*     Issue warning if denormalized column norms detected. Override the
*     high relative accuracy request. Issue licence to kill columns
*     (set them to zero) whose norm is less than sigma_max / BIG (roughly).
* #:(
      WARNING = 0
      IF ( AAQQ .LE. SFMIN ) THEN
         L2RANK = .TRUE.
         L2KILL = .TRUE.
         WARNING = 1
      END IF
*
*     Quick return for one-column matrix
* #:)
      IF ( N .EQ. 1 ) THEN
*
         IF ( LSVEC ) THEN
            CALL SLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
            CALL SLACPY( 'A', M, 1, A, LDA, U, LDU )
*           computing all M left singular vectors of the M x 1 matrix
            IF ( N1 .NE. N  ) THEN
               CALL SGEQRF( M, N, U,LDU, WORK, WORK(N+1),LWORK-N,
     $                      IERR )
               CALL SORGQR( M,N1,1, U,LDU,WORK,WORK(N+1),LWORK-N,
     $                      IERR )
               CALL SCOPY( M, A(1,1), 1, U(1,1), 1 )
            END IF
         END IF
         IF ( RSVEC ) THEN
             V(1,1) = ONE
         END IF
         IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
            SVA(1)  = SVA(1) / SCALEM
            SCALEM  = ONE
         END IF
         WORK(1) = ONE / SCALEM
         WORK(2) = ONE
         IF ( SVA(1) .NE. ZERO ) THEN
            IWORK(1) = 1
            IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
               IWORK(2) = 1
            ELSE
               IWORK(2) = 0
            END IF
         ELSE
            IWORK(1) = 0
            IWORK(2) = 0
         END IF
         IWORK(3) = 0
         IF ( ERREST ) WORK(3) = ONE
         IF ( LSVEC .AND. RSVEC ) THEN
            WORK(4) = ONE
            WORK(5) = ONE
         END IF
         IF ( L2TRAN ) THEN
            WORK(6) = ZERO
            WORK(7) = ZERO
         END IF
         RETURN
*
      END IF
*
      TRANSP = .FALSE.
      L2TRAN = L2TRAN .AND. ( M .EQ. N )
*
      AATMAX = -ONE
      AATMIN =  BIG
      IF ( ROWPIV .OR. L2TRAN ) THEN
*
*     Compute the row norms, needed to determine row pivoting sequence
*     (in the case of heavily row weighted A, row pivoting is strongly
*     advised) and to collect information needed to compare the
*     structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.).
*
         IF ( L2TRAN ) THEN
            DO 1950 p = 1, M
               XSC   = ZERO
               TEMP1 = ONE
               CALL SLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
*              SLASSQ gets both the ell_2 and the ell_infinity norm
*              in one pass through the vector
               WORK(M+N+p)  = XSC * SCALEM
               WORK(N+p)    = XSC * (SCALEM*SQRT(TEMP1))
               AATMAX = MAX( AATMAX, WORK(N+p) )
               IF (WORK(N+p) .NE. ZERO) AATMIN = MIN(AATMIN,WORK(N+p))
 1950       CONTINUE
         ELSE
            DO 1904 p = 1, M
               WORK(M+N+p) = SCALEM*ABS( A(p,ISAMAX(N,A(p,1),LDA)) )
               AATMAX = MAX( AATMAX, WORK(M+N+p) )
               AATMIN = MIN( AATMIN, WORK(M+N+p) )
 1904       CONTINUE
         END IF
*
      END IF
*
*     For square matrix A try to determine whether A^t  would be  better
*     input for the preconditioned Jacobi SVD, with faster convergence.
*     The decision is based on an O(N) function of the vector of column
*     and row norms of A, based on the Shannon entropy. This should give
*     the right choice in most cases when the difference actually matters.
*     It may fail and pick the slower converging side.
*
      ENTRA  = ZERO
      ENTRAT = ZERO
      IF ( L2TRAN ) THEN
*
         XSC   = ZERO
         TEMP1 = ONE
         CALL SLASSQ( N, SVA, 1, XSC, TEMP1 )
         TEMP1 = ONE / TEMP1
*
         ENTRA = ZERO
         DO 1113 p = 1, N
            BIG1  = ( ( SVA(p) / XSC )**2 ) * TEMP1
            IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * ALOG(BIG1)
 1113    CONTINUE
         ENTRA = - ENTRA / ALOG(FLOAT(N))
*
*        Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex.
*        It is derived from the diagonal of  A^t * A.  Do the same with the
*        diagonal of A * A^t, compute the entropy of the corresponding
*        probability distribution. Note that A * A^t and A^t * A have the
*        same trace.
*
         ENTRAT = ZERO
         DO 1114 p = N+1, N+M
            BIG1 = ( ( WORK(p) / XSC )**2 ) * TEMP1
            IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * ALOG(BIG1)
 1114    CONTINUE
         ENTRAT = - ENTRAT / ALOG(FLOAT(M))
*
*        Analyze the entropies and decide A or A^t. Smaller entropy
*        usually means better input for the algorithm.
*
         TRANSP = ( ENTRAT .LT. ENTRA )
*
*        If A^t is better than A, transpose A.
*
         IF ( TRANSP ) THEN
*           In an optimal implementation, this trivial transpose
*           should be replaced with faster transpose.
            DO 1115 p = 1, N - 1
               DO 1116 q = p + 1, N
                   TEMP1 = A(q,p)
                  A(q,p) = A(p,q)
                  A(p,q) = TEMP1
 1116          CONTINUE
 1115       CONTINUE
            DO 1117 p = 1, N
               WORK(M+N+p) = SVA(p)
               SVA(p)      = WORK(N+p)
 1117       CONTINUE
            TEMP1  = AAPP
            AAPP   = AATMAX
            AATMAX = TEMP1
            TEMP1  = AAQQ
            AAQQ   = AATMIN
            AATMIN = TEMP1
            KILL   = LSVEC
            LSVEC  = RSVEC
            RSVEC  = KILL
            IF ( LSVEC ) N1 = N
*
            ROWPIV = .TRUE.
         END IF
*
      END IF
*     END IF L2TRAN
*
*     Scale the matrix so that its maximal singular value remains less
*     than SQRT(BIG) -- the matrix is scaled so that its maximal column
*     has Euclidean norm equal to SQRT(BIG/N). The only reason to keep
*     SQRT(BIG) instead of BIG is the fact that SGEJSV uses LAPACK and
*     BLAS routines that, in some implementations, are not capable of
*     working in the full interval [SFMIN,BIG] and that they may provoke
*     overflows in the intermediate results. If the singular values spread
*     from SFMIN to BIG, then SGESVJ will compute them. So, in that case,
*     one should use SGESVJ instead of SGEJSV.
*
      BIG1   = SQRT( BIG )
      TEMP1  = SQRT( BIG / FLOAT(N) )
*
      CALL SLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
      IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
          AAQQ = ( AAQQ / AAPP ) * TEMP1
      ELSE
          AAQQ = ( AAQQ * TEMP1 ) / AAPP
      END IF
      TEMP1 = TEMP1 * SCALEM
      CALL SLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
*
*     To undo scaling at the end of this procedure, multiply the
*     computed singular values with USCAL2 / USCAL1.
*
      USCAL1 = TEMP1
      USCAL2 = AAPP
*
      IF ( L2KILL ) THEN
*        L2KILL enforces computation of nonzero singular values in
*        the restricted range of condition number of the initial A,
*        sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN).
         XSC = SQRT( SFMIN )
      ELSE
         XSC = SMALL
*
*        Now, if the condition number of A is too big,
*        sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN,
*        as a precaution measure, the full SVD is computed using SGESVJ
*        with accumulated Jacobi rotations. This provides numerically
*        more robust computation, at the cost of slightly increased run
*        time. Depending on the concrete implementation of BLAS and LAPACK
*        (i.e. how they behave in presence of extreme ill-conditioning) the
*        implementor may decide to remove this switch.
         IF ( ( AAQQ.LT.SQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
            JRACC = .TRUE.
         END IF
*
      END IF
      IF ( AAQQ .LT. XSC ) THEN
         DO 700 p = 1, N
            IF ( SVA(p) .LT. XSC ) THEN
               CALL SLASET( 'A', M, 1, ZERO, ZERO, A(1,p), LDA )
               SVA(p) = ZERO
            END IF
 700     CONTINUE
      END IF
*
*     Preconditioning using QR factorization with pivoting
*
      IF ( ROWPIV ) THEN
*        Optional row permutation (Bjoerck row pivoting):
*        A result by Cox and Higham shows that the Bjoerck's
*        row pivoting combined with standard column pivoting
*        has similar effect as Powell-Reid complete pivoting.
*        The ell-infinity norms of A are made nonincreasing.
         DO 1952 p = 1, M - 1
            q = ISAMAX( M-p+1, WORK(M+N+p), 1 ) + p - 1
            IWORK(2*N+p) = q
            IF ( p .NE. q ) THEN
               TEMP1       = WORK(M+N+p)
               WORK(M+N+p) = WORK(M+N+q)
               WORK(M+N+q) = TEMP1
            END IF
 1952    CONTINUE
         CALL SLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 )
      END IF
*
*     End of the preparation phase (scaling, optional sorting and
*     transposing, optional flushing of small columns).
*
*     Preconditioning
*
*     If the full SVD is needed, the right singular vectors are computed
*     from a matrix equation, and for that we need theoretical analysis
*     of the Businger-Golub pivoting. So we use SGEQP3 as the first RR QRF.
*     In all other cases the first RR QRF can be chosen by other criteria
*     (eg speed by replacing global with restricted window pivoting, such
*     as in SGEQPX from TOMS # 782). Good results will be obtained using
*     SGEQPX with properly (!) chosen numerical parameters.
*     Any improvement of SGEQP3 improves overall performance of SGEJSV.
*
*     A * P1 = Q1 * [ R1^t 0]^t:
      DO 1963 p = 1, N
*        .. all columns are free columns
         IWORK(p) = 0
 1963 CONTINUE
      CALL SGEQP3( M,N,A,LDA, IWORK,WORK, WORK(N+1),LWORK-N, IERR )
*
*     The upper triangular matrix R1 from the first QRF is inspected for
*     rank deficiency and possibilities for deflation, or possible
*     ill-conditioning. Depending on the user specified flag L2RANK,
*     the procedure explores possibilities to reduce the numerical
*     rank by inspecting the computed upper triangular factor. If
*     L2RANK or L2ABER are up, then SGEJSV will compute the SVD of
*     A + dA, where ||dA|| <= f(M,N)*EPSLN.
*
      NR = 1
      IF ( L2ABER ) THEN
*        Standard absolute error bound suffices. All sigma_i with
*        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
*        aggressive enforcement of lower numerical rank by introducing a
*        backward error of the order of N*EPSLN*||A||.
         TEMP1 = SQRT(FLOAT(N))*EPSLN
         DO 3001 p = 2, N
            IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN
               NR = NR + 1
            ELSE
               GO TO 3002
            END IF
 3001    CONTINUE
 3002    CONTINUE
      ELSE IF ( L2RANK ) THEN
*        .. similarly as above, only slightly more gentle (less aggressive).
*        Sudden drop on the diagonal of R1 is used as the criterion for
*        close-to-rank-deficient.
         TEMP1 = SQRT(SFMIN)
         DO 3401 p = 2, N
            IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
     $           ( ABS(A(p,p)) .LT. SMALL ) .OR.
     $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
            NR = NR + 1
 3401    CONTINUE
 3402    CONTINUE
*
      ELSE
*        The goal is high relative accuracy. However, if the matrix
*        has high scaled condition number the relative accuracy is in
*        general not feasible. Later on, a condition number estimator
*        will be deployed to estimate the scaled condition number.
*        Here we just remove the underflowed part of the triangular
*        factor. This prevents the situation in which the code is
*        working hard to get the accuracy not warranted by the data.
         TEMP1  = SQRT(SFMIN)
         DO 3301 p = 2, N
            IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR.
     $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
            NR = NR + 1
 3301    CONTINUE
 3302    CONTINUE
*
      END IF
*
      ALMORT = .FALSE.
      IF ( NR .EQ. N ) THEN
         MAXPRJ = ONE
         DO 3051 p = 2, N
            TEMP1  = ABS(A(p,p)) / SVA(IWORK(p))
            MAXPRJ = MIN( MAXPRJ, TEMP1 )
 3051    CONTINUE
         IF ( MAXPRJ**2 .GE. ONE - FLOAT(N)*EPSLN ) ALMORT = .TRUE.
      END IF
*
*
      SCONDA = - ONE
      CONDR1 = - ONE
      CONDR2 = - ONE
*
      IF ( ERREST ) THEN
         IF ( N .EQ. NR ) THEN
            IF ( RSVEC ) THEN
*              .. V is available as workspace
               CALL SLACPY( 'U', N, N, A, LDA, V, LDV )
               DO 3053 p = 1, N
                  TEMP1 = SVA(IWORK(p))
                  CALL SSCAL( p, ONE/TEMP1, V(1,p), 1 )
 3053          CONTINUE
               CALL SPOCON( 'U', N, V, LDV, ONE, TEMP1,
     $              WORK(N+1), IWORK(2*N+M+1), IERR )
            ELSE IF ( LSVEC ) THEN
*              .. U is available as workspace
               CALL SLACPY( 'U', N, N, A, LDA, U, LDU )
               DO 3054 p = 1, N
                  TEMP1 = SVA(IWORK(p))
                  CALL SSCAL( p, ONE/TEMP1, U(1,p), 1 )
 3054          CONTINUE
               CALL SPOCON( 'U', N, U, LDU, ONE, TEMP1,
     $              WORK(N+1), IWORK(2*N+M+1), IERR )
            ELSE
               CALL SLACPY( 'U', N, N, A, LDA, WORK(N+1), N )
               DO 3052 p = 1, N
                  TEMP1 = SVA(IWORK(p))
                  CALL SSCAL( p, ONE/TEMP1, WORK(N+(p-1)*N+1), 1 )
 3052          CONTINUE
*           .. the columns of R are scaled to have unit Euclidean lengths.
               CALL SPOCON( 'U', N, WORK(N+1), N, ONE, TEMP1,
     $              WORK(N+N*N+1), IWORK(2*N+M+1), IERR )
            END IF
            SCONDA = ONE / SQRT(TEMP1)
*           SCONDA is an estimate of SQRT(||(R^t * R)^(-1)||_1).
*           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
         ELSE
            SCONDA = - ONE
         END IF
      END IF
*
      L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. SQRT(BIG1) )
*     If there is no violent scaling, artificial perturbation is not needed.
*
*     Phase 3:
*
      IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
*
*         Singular Values only
*
*         .. transpose A(1:NR,1:N)
         DO 1946 p = 1, MIN( N-1, NR )
            CALL SCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
 1946    CONTINUE
*
*        The following two DO-loops introduce small relative perturbation
*        into the strict upper triangle of the lower triangular matrix.
*        Small entries below the main diagonal are also changed.
*        This modification is useful if the computing environment does not
*        provide/allow FLUSH TO ZERO underflow, for it prevents many
*        annoying denormalized numbers in case of strongly scaled matrices.
*        The perturbation is structured so that it does not introduce any
*        new perturbation of the singular values, and it does not destroy
*        the job done by the preconditioner.
*        The licence for this perturbation is in the variable L2PERT, which
*        should be .FALSE. if FLUSH TO ZERO underflow is active.
*
         IF ( .NOT. ALMORT ) THEN
*
            IF ( L2PERT ) THEN
*              XSC = SQRT(SMALL)
               XSC = EPSLN / FLOAT(N)
               DO 4947 q = 1, NR
                  TEMP1 = XSC*ABS(A(q,q))
                  DO 4949 p = 1, N
                     IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
     $                    .OR. ( p .LT. q ) )
     $                     A(p,q) = SIGN( TEMP1, A(p,q) )
 4949             CONTINUE
 4947          CONTINUE
            ELSE
               CALL SLASET( 'U', NR-1,NR-1, ZERO,ZERO, A(1,2),LDA )
            END IF
*
*            .. second preconditioning using the QR factorization
*
            CALL SGEQRF( N,NR, A,LDA, WORK, WORK(N+1),LWORK-N, IERR )
*
*           .. and transpose upper to lower triangular
            DO 1948 p = 1, NR - 1
               CALL SCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
 1948       CONTINUE
*
         END IF
*
*           Row-cyclic Jacobi SVD algorithm with column pivoting
*
*           .. again some perturbation (a "background noise") is added
*           to drown denormals
            IF ( L2PERT ) THEN
*              XSC = SQRT(SMALL)
               XSC = EPSLN / FLOAT(N)
               DO 1947 q = 1, NR
                  TEMP1 = XSC*ABS(A(q,q))
                  DO 1949 p = 1, NR
                     IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
     $                       .OR. ( p .LT. q ) )
     $                   A(p,q) = SIGN( TEMP1, A(p,q) )
 1949             CONTINUE
 1947          CONTINUE
            ELSE
               CALL SLASET( 'U', NR-1, NR-1, ZERO, ZERO, A(1,2),
     $                      LDA )
            END IF
*
*           .. and one-sided Jacobi rotations are started on a lower
*           triangular matrix (plus perturbation which is ignored in
*           the part which destroys triangular form (confusing?!))
*
            CALL SGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA,
     $                      N, V, LDV, WORK, LWORK, INFO )
*
            SCALEM  = WORK(1)
            NUMRANK = NINT(WORK(2))
*
*
      ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN
*
*        -> Singular Values and Right Singular Vectors <-
*
         IF ( ALMORT ) THEN
*
*           .. in this case NR equals N
            DO 1998 p = 1, NR
               CALL SCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1998       CONTINUE
            CALL SLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2),
     $                   LDV )
*
            CALL SGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA,
     $                  WORK, LWORK, INFO )
            SCALEM  = WORK(1)
            NUMRANK = NINT(WORK(2))

         ELSE
*
*        .. two more QR factorizations ( one QRF is not enough, two require
*        accumulated product of Jacobi rotations, three are perfect )
*
            CALL SLASET( 'Lower', NR-1, NR-1, ZERO, ZERO, A(2,1),
     $                   LDA )
            CALL SGELQF( NR, N, A, LDA, WORK, WORK(N+1), LWORK-N,
     $                   IERR)
            CALL SLACPY( 'Lower', NR, NR, A, LDA, V, LDV )
            CALL SLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2),
     $                   LDV )
            CALL SGEQRF( NR, NR, V, LDV, WORK(N+1), WORK(2*N+1),
     $                   LWORK-2*N, IERR )
            DO 8998 p = 1, NR
               CALL SCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
 8998       CONTINUE
            CALL SLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2),
     $                   LDV )
*
            CALL SGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U,
     $                  LDU, WORK(N+1), LWORK-N, INFO )
            SCALEM  = WORK(N+1)
            NUMRANK = NINT(WORK(N+2))
            IF ( NR .LT. N ) THEN
               CALL SLASET( 'A',N-NR, NR, ZERO,ZERO, V(NR+1,1),
     $                      LDV )
               CALL SLASET( 'A',NR, N-NR, ZERO,ZERO, V(1,NR+1),
     $                      LDV )
               CALL SLASET( 'A',N-NR,N-NR,ZERO,ONE, V(NR+1,NR+1),
     $                      LDV )
            END IF
*
         CALL SORMLQ( 'Left', 'Transpose', N, N, NR, A, LDA, WORK,
     $               V, LDV, WORK(N+1), LWORK-N, IERR )
*
         END IF
*
         DO 8991 p = 1, N
            CALL SCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
 8991    CONTINUE
         CALL SLACPY( 'All', N, N, A, LDA, V, LDV )
*
         IF ( TRANSP ) THEN
            CALL SLACPY( 'All', N, N, V, LDV, U, LDU )
         END IF
*
      ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
*
*        .. Singular Values and Left Singular Vectors                 ..
*
*        .. second preconditioning step to avoid need to accumulate
*        Jacobi rotations in the Jacobi iterations.
         DO 1965 p = 1, NR
            CALL SCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
 1965    CONTINUE
         CALL SLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
*
         CALL SGEQRF( N, NR, U, LDU, WORK(N+1), WORK(2*N+1),
     $              LWORK-2*N, IERR )
*
         DO 1967 p = 1, NR - 1
            CALL SCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
 1967    CONTINUE
         CALL SLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
*
         CALL SGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
     $        LDA, WORK(N+1), LWORK-N, INFO )
         SCALEM  = WORK(N+1)
         NUMRANK = NINT(WORK(N+2))
*
         IF ( NR .LT. M ) THEN
            CALL SLASET( 'A',  M-NR, NR,ZERO, ZERO, U(NR+1,1), LDU )
            IF ( NR .LT. N1 ) THEN
               CALL SLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1),
     $                      LDU )
               CALL SLASET( 'A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1),
     $                      LDU )
            END IF
         END IF
*
         CALL SORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
     $               LDU, WORK(N+1), LWORK-N, IERR )
*
         IF ( ROWPIV )
     $       CALL SLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
*
         DO 1974 p = 1, N1
            XSC = ONE / SNRM2( M, U(1,p), 1 )
            CALL SSCAL( M, XSC, U(1,p), 1 )
 1974    CONTINUE
*
         IF ( TRANSP ) THEN
            CALL SLACPY( 'All', N, N, U, LDU, V, LDV )
         END IF
*
      ELSE
*
*        .. Full SVD ..
*
         IF ( .NOT. JRACC ) THEN
*
         IF ( .NOT. ALMORT ) THEN
*
*           Second Preconditioning Step (QRF [with pivoting])
*           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
*           equivalent to an LQF CALL. Since in many libraries the QRF
*           seems to be better optimized than the LQF, we do explicit
*           transpose and use the QRF. This is subject to changes in an
*           optimized implementation of SGEJSV.
*
            DO 1968 p = 1, NR
               CALL SCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1968       CONTINUE
*
*           .. the following two loops perturb small entries to avoid
*           denormals in the second QR factorization, where they are
*           as good as zeros. This is done to avoid painfully slow
*           computation with denormals. The relative size of the perturbation
*           is a parameter that can be changed by the implementer.
*           This perturbation device will be obsolete on machines with
*           properly implemented arithmetic.
*           To switch it off, set L2PERT=.FALSE. To remove it from  the
*           code, remove the action under L2PERT=.TRUE., leave the ELSE part.
*           The following two loops should be blocked and fused with the
*           transposed copy above.
*
            IF ( L2PERT ) THEN
               XSC = SQRT(SMALL)
               DO 2969 q = 1, NR
                  TEMP1 = XSC*ABS( V(q,q) )
                  DO 2968 p = 1, N
                     IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
     $                   .OR. ( p .LT. q ) )
     $                   V(p,q) = SIGN( TEMP1, V(p,q) )
                     IF ( p .LT. q ) V(p,q) = - V(p,q)
 2968             CONTINUE
 2969          CONTINUE
            ELSE
               CALL SLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2),
     $                      LDV )
            END IF
*
*           Estimate the row scaled condition number of R1
*           (If R1 is rectangular, N > NR, then the condition number
*           of the leading NR x NR submatrix is estimated.)
*
            CALL SLACPY( 'L', NR, NR, V, LDV, WORK(2*N+1), NR )
            DO 3950 p = 1, NR
               TEMP1 = SNRM2(NR-p+1,WORK(2*N+(p-1)*NR+p),1)
               CALL SSCAL(NR-p+1,ONE/TEMP1,WORK(2*N+(p-1)*NR+p),1)
 3950       CONTINUE
            CALL SPOCON('Lower',NR,WORK(2*N+1),NR,ONE,TEMP1,
     $                   WORK(2*N+NR*NR+1),IWORK(M+2*N+1),IERR)
            CONDR1 = ONE / SQRT(TEMP1)
*           .. here need a second opinion on the condition number
*           .. then assume worst case scenario
*           R1 is OK for inverse <=> CONDR1 .LT. FLOAT(N)
*           more conservative    <=> CONDR1 .LT. SQRT(FLOAT(N))
*
            COND_OK = SQRT(FLOAT(NR))
*[TP]       COND_OK is a tuning parameter.

            IF ( CONDR1 .LT. COND_OK ) THEN
*              .. the second QRF without pivoting. Note: in an optimized
*              implementation, this QRF should be implemented as the QRF
*              of a lower triangular matrix.
*              R1^t = Q2 * R2
               CALL SGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
     $              LWORK-2*N, IERR )
*
               IF ( L2PERT ) THEN
                  XSC = SQRT(SMALL)/EPSLN
                  DO 3959 p = 2, NR
                     DO 3958 q = 1, p - 1
                        TEMP1 = XSC * MIN(ABS(V(p,p)),ABS(V(q,q)))
                        IF ( ABS(V(q,p)) .LE. TEMP1 )
     $                     V(q,p) = SIGN( TEMP1, V(q,p) )
 3958                CONTINUE
 3959             CONTINUE
               END IF
*
               IF ( NR .NE. N )
     $         CALL SLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
*              .. save ...
*
*           .. this transposed copy should be better than naive
               DO 1969 p = 1, NR - 1
                  CALL SCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
 1969          CONTINUE
*
               CONDR2 = CONDR1
*
            ELSE
*
*              .. ill-conditioned case: second QRF with pivoting
*              Note that windowed pivoting would be equally good
*              numerically, and more run-time efficient. So, in
*              an optimal implementation, the next call to SGEQP3
*              should be replaced with eg. CALL SGEQPX (ACM TOMS #782)
*              with properly (carefully) chosen parameters.
*
*              R1^t * P2 = Q2 * R2
               DO 3003 p = 1, NR
                  IWORK(N+p) = 0
 3003          CONTINUE
               CALL SGEQP3( N, NR, V, LDV, IWORK(N+1), WORK(N+1),
     $                  WORK(2*N+1), LWORK-2*N, IERR )
**               CALL SGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
**     $              LWORK-2*N, IERR )
               IF ( L2PERT ) THEN
                  XSC = SQRT(SMALL)
                  DO 3969 p = 2, NR
                     DO 3968 q = 1, p - 1
                        TEMP1 = XSC * MIN(ABS(V(p,p)),ABS(V(q,q)))
                        IF ( ABS(V(q,p)) .LE. TEMP1 )
     $                     V(q,p) = SIGN( TEMP1, V(q,p) )
 3968                CONTINUE
 3969             CONTINUE
               END IF
*
               CALL SLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
*
               IF ( L2PERT ) THEN
                  XSC = SQRT(SMALL)
                  DO 8970 p = 2, NR
                     DO 8971 q = 1, p - 1
                        TEMP1 = XSC * MIN(ABS(V(p,p)),ABS(V(q,q)))
                        V(p,q) = - SIGN( TEMP1, V(q,p) )
 8971                CONTINUE
 8970             CONTINUE
               ELSE
                  CALL SLASET( 'L',NR-1,NR-1,ZERO,ZERO,V(2,1),LDV )
               END IF
*              Now, compute R2 = L3 * Q3, the LQ factorization.
               CALL SGELQF( NR, NR, V, LDV, WORK(2*N+N*NR+1),
     $               WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
*              .. and estimate the condition number
               CALL SLACPY( 'L',NR,NR,V,LDV,WORK(2*N+N*NR+NR+1),NR )
               DO 4950 p = 1, NR
                  TEMP1 = SNRM2( p, WORK(2*N+N*NR+NR+p), NR )
                  CALL SSCAL( p, ONE/TEMP1, WORK(2*N+N*NR+NR+p), NR )
 4950          CONTINUE
               CALL SPOCON( 'L',NR,WORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
     $              WORK(2*N+N*NR+NR+NR*NR+1),IWORK(M+2*N+1),IERR )
               CONDR2 = ONE / SQRT(TEMP1)
*
               IF ( CONDR2 .GE. COND_OK ) THEN
*                 .. save the Householder vectors used for Q3
*                 (this overwrites the copy of R2, as it will not be
*                 needed in this branch, but it does not overwrite the
*                 Huseholder vectors of Q2.).
                  CALL SLACPY( 'U', NR, NR, V, LDV, WORK(2*N+1), N )
*                 .. and the rest of the information on Q3 is in
*                 WORK(2*N+N*NR+1:2*N+N*NR+N)
               END IF
*
            END IF
*
            IF ( L2PERT ) THEN
               XSC = SQRT(SMALL)
               DO 4968 q = 2, NR
                  TEMP1 = XSC * V(q,q)
                  DO 4969 p = 1, q - 1
*                    V(p,q) = - SIGN( TEMP1, V(q,p) )
                     V(p,q) = - SIGN( TEMP1, V(p,q) )
 4969             CONTINUE
 4968          CONTINUE
            ELSE
               CALL SLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )
            END IF
*
*        Second preconditioning finished; continue with Jacobi SVD
*        The input matrix is lower triangular.
*
*        Recover the right singular vectors as solution of a well
*        conditioned triangular matrix equation.
*
            IF ( CONDR1 .LT. COND_OK ) THEN
*
               CALL SGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U,
     $              LDU,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,INFO )
               SCALEM  = WORK(2*N+N*NR+NR+1)
               NUMRANK = NINT(WORK(2*N+N*NR+NR+2))
               DO 3970 p = 1, NR
                  CALL SCOPY( NR, V(1,p), 1, U(1,p), 1 )
                  CALL SSCAL( NR, SVA(p),    V(1,p), 1 )
 3970          CONTINUE

*        .. pick the right matrix equation and solve it
*
               IF ( NR .EQ. N ) THEN
* :))             .. best case, R1 is inverted. The solution of this matrix
*                 equation is Q2*V2 = the product of the Jacobi rotations
*                 used in SGESVJ, premultiplied with the orthogonal matrix
*                 from the second QR factorization.
                  CALL STRSM( 'L','U','N','N', NR,NR,ONE, A,LDA, V,
     $                        LDV )
               ELSE
*                 .. R1 is well conditioned, but non-square. Transpose(R2)
*                 is inverted to get the product of the Jacobi rotations
*                 used in SGESVJ. The Q-factor from the second QR
*                 factorization is then built in explicitly.
                  CALL STRSM('L','U','T','N',NR,NR,ONE,WORK(2*N+1),
     $                 N,V,LDV)
                  IF ( NR .LT. N ) THEN
                    CALL SLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)
                    CALL SLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)
                    CALL SLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),
     $                           LDV)
                  END IF
                  CALL SORMQR('L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
     $                 V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
               END IF
*
            ELSE IF ( CONDR2 .LT. COND_OK ) THEN
*
* :)           .. the input matrix A is very likely a relative of
*              the Kahan matrix :)
*              The matrix R2 is inverted. The solution of the matrix equation
*              is Q3^T*V3 = the product of the Jacobi rotations (applied to
*              the lower triangular L3 from the LQ factorization of
*              R2=L3*Q3), pre-multiplied with the transposed Q3.
               CALL SGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR,
     $                      U,
     $              LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
               SCALEM  = WORK(2*N+N*NR+NR+1)
               NUMRANK = NINT(WORK(2*N+N*NR+NR+2))
               DO 3870 p = 1, NR
                  CALL SCOPY( NR, V(1,p), 1, U(1,p), 1 )
                  CALL SSCAL( NR, SVA(p),    U(1,p), 1 )
 3870          CONTINUE
               CALL STRSM('L','U','N','N',NR,NR,ONE,WORK(2*N+1),N,U,
     $                     LDU)
*              .. apply the permutation from the second QR factorization
               DO 873 q = 1, NR
                  DO 872 p = 1, NR
                     WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 872              CONTINUE
                  DO 874 p = 1, NR
                     U(p,q) = WORK(2*N+N*NR+NR+p)
 874              CONTINUE
 873           CONTINUE
               IF ( NR .LT. N ) THEN
                  CALL SLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
                  CALL SLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
                  CALL SLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),
     $                         LDV )
               END IF
               CALL SORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
     $              V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
            ELSE
*              Last line of defense.
* #:(          This is a rather pathological case: no scaled condition
*              improvement after two pivoted QR factorizations. Other
*              possibility is that the rank revealing QR factorization
*              or the condition estimator has failed, or the COND_OK
*              is set very close to ONE (which is unnecessary). Normally,
*              this branch should never be executed, but in rare cases of
*              failure of the RRQR or condition estimator, the last line of
*              defense ensures that SGEJSV completes the task.
*              Compute the full SVD of L3 using SGESVJ with explicit
*              accumulation of Jacobi rotations.
               CALL SGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR,
     $                      U,
     $              LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
               SCALEM  = WORK(2*N+N*NR+NR+1)
               NUMRANK = NINT(WORK(2*N+N*NR+NR+2))
               IF ( NR .LT. N ) THEN
                  CALL SLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
                  CALL SLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
                  CALL SLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),
     $                         LDV )
               END IF
               CALL SORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
     $              V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
*
               CALL SORMLQ( 'L', 'T', NR, NR, NR, WORK(2*N+1), N,
     $              WORK(2*N+N*NR+1), U, LDU, WORK(2*N+N*NR+NR+1),
     $              LWORK-2*N-N*NR-NR, IERR )
               DO 773 q = 1, NR
                  DO 772 p = 1, NR
                     WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 772              CONTINUE
                  DO 774 p = 1, NR
                     U(p,q) = WORK(2*N+N*NR+NR+p)
 774              CONTINUE
 773           CONTINUE
*
            END IF
*
*           Permute the rows of V using the (column) permutation from the
*           first QRF. Also, scale the columns to make them unit in
*           Euclidean norm. This applies to all cases.
*
            TEMP1 = SQRT(FLOAT(N)) * EPSLN
            DO 1972 q = 1, N
               DO 972 p = 1, N
                  WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
  972          CONTINUE
               DO 973 p = 1, N
                  V(p,q) = WORK(2*N+N*NR+NR+p)
  973          CONTINUE
               XSC = ONE / SNRM2( N, V(1,q), 1 )
               IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
     $           CALL SSCAL( N, XSC, V(1,q), 1 )
 1972       CONTINUE
*           At this moment, V contains the right singular vectors of A.
*           Next, assemble the left singular vector matrix U (M x N).
            IF ( NR .LT. M ) THEN
               CALL SLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1),
     $                      LDU )
               IF ( NR .LT. N1 ) THEN
                  CALL SLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
                  CALL SLASET('A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1),
     $                         LDU)
               END IF
            END IF
*
*           The Q matrix from the first QRF is built into the left singular
*           matrix U. This applies to all cases.
*
            CALL SORMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, WORK, U,
     $           LDU, WORK(N+1), LWORK-N, IERR )

*           The columns of U are normalized. The cost is O(M*N) flops.
            TEMP1 = SQRT(FLOAT(M)) * EPSLN
            DO 1973 p = 1, NR
               XSC = ONE / SNRM2( M, U(1,p), 1 )
               IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
     $          CALL SSCAL( M, XSC, U(1,p), 1 )
 1973       CONTINUE
*
*           If the initial QRF is computed with row pivoting, the left
*           singular vectors must be adjusted.
*
            IF ( ROWPIV )
     $          CALL SLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
*
         ELSE
*
*        .. the initial matrix A has almost orthogonal columns and
*        the second QRF is not needed
*
            CALL SLACPY( 'Upper', N, N, A, LDA, WORK(N+1), N )
            IF ( L2PERT ) THEN
               XSC = SQRT(SMALL)
               DO 5970 p = 2, N
                  TEMP1 = XSC * WORK( N + (p-1)*N + p )
                  DO 5971 q = 1, p - 1
                     WORK(N+(q-1)*N+p)=-SIGN(TEMP1,WORK(N+(p-1)*N+q))
 5971             CONTINUE
 5970          CONTINUE
            ELSE
               CALL SLASET( 'Lower',N-1,N-1,ZERO,ZERO,WORK(N+2),N )
            END IF
*
            CALL SGESVJ( 'Upper', 'U', 'N', N, N, WORK(N+1), N, SVA,
     $           N, U, LDU, WORK(N+N*N+1), LWORK-N-N*N, INFO )
*
            SCALEM  = WORK(N+N*N+1)
            NUMRANK = NINT(WORK(N+N*N+2))
            DO 6970 p = 1, N
               CALL SCOPY( N, WORK(N+(p-1)*N+1), 1, U(1,p), 1 )
               CALL SSCAL( N, SVA(p), WORK(N+(p-1)*N+1), 1 )
 6970       CONTINUE
*
            CALL STRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N,
     $           ONE, A, LDA, WORK(N+1), N )
            DO 6972 p = 1, N
               CALL SCOPY( N, WORK(N+p), N, V(IWORK(p),1), LDV )
 6972       CONTINUE
            TEMP1 = SQRT(FLOAT(N))*EPSLN
            DO 6971 p = 1, N
               XSC = ONE / SNRM2( N, V(1,p), 1 )
               IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
     $            CALL SSCAL( N, XSC, V(1,p), 1 )
 6971       CONTINUE
*
*           Assemble the left singular vector matrix U (M x N).
*
            IF ( N .LT. M ) THEN
               CALL SLASET( 'A',  M-N, N, ZERO, ZERO, U(N+1,1), LDU )
               IF ( N .LT. N1 ) THEN
                  CALL SLASET( 'A',N,  N1-N, ZERO, ZERO,  U(1,N+1),
     $                         LDU )
                  CALL SLASET( 'A',M-N,N1-N, ZERO, ONE,U(N+1,N+1),
     $                         LDU )
               END IF
            END IF
            CALL SORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
     $           LDU, WORK(N+1), LWORK-N, IERR )
            TEMP1 = SQRT(FLOAT(M))*EPSLN
            DO 6973 p = 1, N1
               XSC = ONE / SNRM2( M, U(1,p), 1 )
               IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
     $            CALL SSCAL( M, XSC, U(1,p), 1 )
 6973       CONTINUE
*
            IF ( ROWPIV )
     $         CALL SLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
*
         END IF
*
*        end of the  >> almost orthogonal case <<  in the full SVD
*
         ELSE
*
*        This branch deploys a preconditioned Jacobi SVD with explicitly
*        accumulated rotations. It is included as optional, mainly for
*        experimental purposes. It does perform well, and can also be used.
*        In this implementation, this branch will be automatically activated
*        if the  condition number sigma_max(A) / sigma_min(A) is predicted
*        to be greater than the overflow threshold. This is because the
*        a posteriori computation of the singular vectors assumes robust
*        implementation of BLAS and some LAPACK procedures, capable of working
*        in presence of extreme values. Since that is not always the case, ...
*
         DO 7968 p = 1, NR
            CALL SCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 7968    CONTINUE
*
         IF ( L2PERT ) THEN
            XSC = SQRT(SMALL/EPSLN)
            DO 5969 q = 1, NR
               TEMP1 = XSC*ABS( V(q,q) )
               DO 5968 p = 1, N
                  IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
     $                .OR. ( p .LT. q ) )
     $                V(p,q) = SIGN( TEMP1, V(p,q) )
                  IF ( p .LT. q ) V(p,q) = - V(p,q)
 5968          CONTINUE
 5969       CONTINUE
         ELSE
            CALL SLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
         END IF

         CALL SGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
     $        LWORK-2*N, IERR )
         CALL SLACPY( 'L', N, NR, V, LDV, WORK(2*N+1), N )
*
         DO 7969 p = 1, NR
            CALL SCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
 7969    CONTINUE

         IF ( L2PERT ) THEN
            XSC = SQRT(SMALL/EPSLN)
            DO 9970 q = 2, NR
               DO 9971 p = 1, q - 1
                  TEMP1 = XSC * MIN(ABS(U(p,p)),ABS(U(q,q)))
                  U(p,q) = - SIGN( TEMP1, U(q,p) )
 9971          CONTINUE
 9970       CONTINUE
         ELSE
            CALL SLASET('U', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
         END IF

         CALL SGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA,
     $        N, V, LDV, WORK(2*N+N*NR+1), LWORK-2*N-N*NR, INFO )
         SCALEM  = WORK(2*N+N*NR+1)
         NUMRANK = NINT(WORK(2*N+N*NR+2))

         IF ( NR .LT. N ) THEN
            CALL SLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
            CALL SLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
            CALL SLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
         END IF

         CALL SORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
     $        V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
*
*           Permute the rows of V using the (column) permutation from the
*           first QRF. Also, scale the columns to make them unit in
*           Euclidean norm. This applies to all cases.
*
            TEMP1 = SQRT(FLOAT(N)) * EPSLN
            DO 7972 q = 1, N
               DO 8972 p = 1, N
                  WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 8972          CONTINUE
               DO 8973 p = 1, N
                  V(p,q) = WORK(2*N+N*NR+NR+p)
 8973          CONTINUE
               XSC = ONE / SNRM2( N, V(1,q), 1 )
               IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
     $           CALL SSCAL( N, XSC, V(1,q), 1 )
 7972       CONTINUE
*
*           At this moment, V contains the right singular vectors of A.
*           Next, assemble the left singular vector matrix U (M x N).
*
         IF ( NR .LT. M ) THEN
            CALL SLASET( 'A',  M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
            IF ( NR .LT. N1 ) THEN
               CALL SLASET( 'A',NR,  N1-NR, ZERO, ZERO,  U(1,NR+1),
     $                      LDU )
               CALL SLASET( 'A',M-NR,N1-NR, ZERO, ONE,U(NR+1,NR+1),
     $                      LDU )
            END IF
         END IF
*
         CALL SORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
     $        LDU, WORK(N+1), LWORK-N, IERR )
*
            IF ( ROWPIV )
     $         CALL SLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
*
*
         END IF
         IF ( TRANSP ) THEN
*           .. swap U and V because the procedure worked on A^t
            DO 6974 p = 1, N
               CALL SSWAP( N, U(1,p), 1, V(1,p), 1 )
 6974       CONTINUE
         END IF
*
      END IF
*     end of the full SVD
*
*     Undo scaling, if necessary (and possible)
*
      IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
         CALL SLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N,
     $                IERR )
         USCAL1 = ONE
         USCAL2 = ONE
      END IF
*
      IF ( NR .LT. N ) THEN
         DO 3004 p = NR+1, N
            SVA(p) = ZERO
 3004    CONTINUE
      END IF
*
      WORK(1) = USCAL2 * SCALEM
      WORK(2) = USCAL1
      IF ( ERREST ) WORK(3) = SCONDA
      IF ( LSVEC .AND. RSVEC ) THEN
         WORK(4) = CONDR1
         WORK(5) = CONDR2
      END IF
      IF ( L2TRAN ) THEN
         WORK(6) = ENTRA
         WORK(7) = ENTRAT
      END IF
*
      IWORK(1) = NR
      IWORK(2) = NUMRANK
      IWORK(3) = WARNING
*
      RETURN
*     ..
*     .. END OF SGEJSV
*     ..
      END
*