numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/sgeqr.f | 9953B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
*> \brief \b SGEQR * * Definition: * =========== * * SUBROUTINE SGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, * INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, M, N, TSIZE, LWORK * .. * .. Array Arguments .. * REAL A( LDA, * ), T( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SGEQR computes a QR factorization of a real M-by-N matrix A: *> *> A = Q * ( R ), *> ( 0 ) *> *> where: *> *> Q is a M-by-M orthogonal matrix; *> R is an upper-triangular N-by-N matrix; *> 0 is a (M-N)-by-N zero matrix, if M > N. *> *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is REAL array, dimension (LDA,N) *> On entry, the M-by-N matrix A. *> On exit, the elements on and above the diagonal of the array *> contain the min(M,N)-by-N upper trapezoidal matrix R *> (R is upper triangular if M >= N); *> the elements below the diagonal are used to store part of the *> data structure to represent Q. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[out] T *> \verbatim *> T is REAL array, dimension (MAX(5,TSIZE)) *> On exit, if INFO = 0, T(1) returns optimal (or either minimal *> or optimal, if query is assumed) TSIZE. See TSIZE for details. *> Remaining T contains part of the data structure used to represent Q. *> If one wants to apply or construct Q, then one needs to keep T *> (in addition to A) and pass it to further subroutines. *> \endverbatim *> *> \param[in] TSIZE *> \verbatim *> TSIZE is INTEGER *> If TSIZE >= 5, the dimension of the array T. *> If TSIZE = -1 or -2, then a workspace query is assumed. The routine *> only calculates the sizes of the T and WORK arrays, returns these *> values as the first entries of the T and WORK arrays, and no error *> message related to T or WORK is issued by XERBLA. *> If TSIZE = -1, the routine calculates optimal size of T for the *> optimum performance and returns this value in T(1). *> If TSIZE = -2, the routine calculates minimal size of T and *> returns this value in T(1). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> (workspace) REAL array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) contains optimal (or either minimal *> or optimal, if query was assumed) LWORK. *> See LWORK for details. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1 or -2, then a workspace query is assumed. The routine *> only calculates the sizes of the T and WORK arrays, returns these *> values as the first entries of the T and WORK arrays, and no error *> message related to T or WORK is issued by XERBLA. *> If LWORK = -1, the routine calculates optimal size of WORK for the *> optimal performance and returns this value in WORK(1). *> If LWORK = -2, the routine calculates minimal size of WORK and *> returns this value in WORK(1). *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \par Further Details * ==================== *> *> \verbatim *> *> The goal of the interface is to give maximum freedom to the developers for *> creating any QR factorization algorithm they wish. The triangular *> (trapezoidal) R has to be stored in the upper part of A. The lower part of A *> and the array T can be used to store any relevant information for applying or *> constructing the Q factor. The WORK array can safely be discarded after exit. *> *> Caution: One should not expect the sizes of T and WORK to be the same from one *> LAPACK implementation to the other, or even from one execution to the other. *> A workspace query (for T and WORK) is needed at each execution. However, *> for a given execution, the size of T and WORK are fixed and will not change *> from one query to the next. *> *> \endverbatim *> *> \par Further Details particular to this LAPACK implementation: * ============================================================== *> *> \verbatim *> *> These details are particular for this LAPACK implementation. Users should not *> take them for granted. These details may change in the future, and are not likely *> true for another LAPACK implementation. These details are relevant if one wants *> to try to understand the code. They are not part of the interface. *> *> In this version, *> *> T(2): row block size (MB) *> T(3): column block size (NB) *> T(6:TSIZE): data structure needed for Q, computed by *> SLATSQR or SGEQRT *> *> Depending on the matrix dimensions M and N, and row and column *> block sizes MB and NB returned by ILAENV, SGEQR will use either *> SLATSQR (if the matrix is tall-and-skinny) or SGEQRT to compute *> the QR factorization. *> *> \endverbatim *> *> \ingroup geqr *> * ===================================================================== SUBROUTINE SGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N, TSIZE, LWORK * .. * .. Array Arguments .. REAL A( LDA, * ), T( * ), WORK( * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. LOGICAL LQUERY, LMINWS, MINT, MINW INTEGER MB, NB, MINTSZ, NBLCKS, LWMIN, LWREQ * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME REAL SROUNDUP_LWORK EXTERNAL SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL SLATSQR, SGEQRT, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, MOD * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. Executable statements .. * * Test the input arguments * INFO = 0 * LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR. $ LWORK.EQ.-1 .OR. LWORK.EQ.-2 ) * MINT = .FALSE. MINW = .FALSE. IF( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) THEN IF( TSIZE.NE.-1 ) MINT = .TRUE. IF( LWORK.NE.-1 ) MINW = .TRUE. END IF * * Determine the block size * IF( MIN( M, N ).GT.0 ) THEN MB = ILAENV( 1, 'SGEQR ', ' ', M, N, 1, -1 ) NB = ILAENV( 1, 'SGEQR ', ' ', M, N, 2, -1 ) ELSE MB = M NB = 1 END IF IF( MB.GT.M .OR. MB.LE.N ) MB = M IF( NB.GT.MIN( M, N ) .OR. NB.LT.1 ) NB = 1 MINTSZ = N + 5 IF ( MB.GT.N .AND. M.GT.N ) THEN IF( MOD( M - N, MB - N ).EQ.0 ) THEN NBLCKS = ( M - N ) / ( MB - N ) ELSE NBLCKS = ( M - N ) / ( MB - N ) + 1 END IF ELSE NBLCKS = 1 END IF * * Determine if the workspace size satisfies minimal size * LWMIN = MAX( 1, N ) LWREQ = MAX( 1, N*NB ) LMINWS = .FALSE. IF( ( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) .OR. LWORK.LT.LWREQ ) $ .AND. ( LWORK.GE.N ) .AND. ( TSIZE.GE.MINTSZ ) $ .AND. ( .NOT.LQUERY ) ) THEN IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) ) THEN LMINWS = .TRUE. NB = 1 MB = M END IF IF( LWORK.LT.LWREQ ) THEN LMINWS = .TRUE. NB = 1 END IF END IF * IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 ELSE IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) $ .AND. ( .NOT.LQUERY ) .AND. ( .NOT.LMINWS ) ) THEN INFO = -6 ELSE IF( ( LWORK.LT.LWREQ ) .AND. ( .NOT.LQUERY ) $ .AND. ( .NOT.LMINWS ) ) THEN INFO = -8 END IF * IF( INFO.EQ.0 ) THEN IF( MINT ) THEN T( 1 ) = REAL( MINTSZ ) ELSE T( 1 ) = REAL( NB*N*NBLCKS + 5 ) END IF T( 2 ) = REAL( MB ) T( 3 ) = REAL( NB ) IF( MINW ) THEN WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) ELSE WORK( 1 ) = SROUNDUP_LWORK( LWREQ ) END IF END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGEQR', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( MIN( M, N ).EQ.0 ) THEN RETURN END IF * * The QR Decomposition * IF( ( M.LE.N ) .OR. ( MB.LE.N ) .OR. ( MB.GE.M ) ) THEN CALL SGEQRT( M, N, NB, A, LDA, T( 6 ), NB, WORK, INFO ) ELSE CALL SLATSQR( M, N, MB, NB, A, LDA, T( 6 ), NB, WORK, $ LWORK, INFO ) END IF * WORK( 1 ) = SROUNDUP_LWORK( LWREQ ) * RETURN * * End of SGEQR * END