numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/sggevx.f | 29610B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
*> \brief <b> SGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b> * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SGGEVX + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggevx.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggevx.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggevx.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB, * ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO, * IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, * RCONDV, WORK, LWORK, IWORK, BWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER BALANC, JOBVL, JOBVR, SENSE * INTEGER IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N * REAL ABNRM, BBNRM * .. * .. Array Arguments .. * LOGICAL BWORK( * ) * INTEGER IWORK( * ) * REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), * $ B( LDB, * ), BETA( * ), LSCALE( * ), * $ RCONDE( * ), RCONDV( * ), RSCALE( * ), * $ VL( LDVL, * ), VR( LDVR, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B) *> the generalized eigenvalues, and optionally, the left and/or right *> generalized eigenvectors. *> *> Optionally also, it computes a balancing transformation to improve *> the conditioning of the eigenvalues and eigenvectors (ILO, IHI, *> LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for *> the eigenvalues (RCONDE), and reciprocal condition numbers for the *> right eigenvectors (RCONDV). *> *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is *> singular. It is usually represented as the pair (alpha,beta), as *> there is a reasonable interpretation for beta=0, and even for both *> being zero. *> *> The right eigenvector v(j) corresponding to the eigenvalue lambda(j) *> of (A,B) satisfies *> *> A * v(j) = lambda(j) * B * v(j) . *> *> The left eigenvector u(j) corresponding to the eigenvalue lambda(j) *> of (A,B) satisfies *> *> u(j)**H * A = lambda(j) * u(j)**H * B. *> *> where u(j)**H is the conjugate-transpose of u(j). *> *> \endverbatim * * Arguments: * ========== * *> \param[in] BALANC *> \verbatim *> BALANC is CHARACTER*1 *> Specifies the balance option to be performed. *> = 'N': do not diagonally scale or permute; *> = 'P': permute only; *> = 'S': scale only; *> = 'B': both permute and scale. *> Computed reciprocal condition numbers will be for the *> matrices after permuting and/or balancing. Permuting does *> not change condition numbers (in exact arithmetic), but *> balancing does. *> \endverbatim *> *> \param[in] JOBVL *> \verbatim *> JOBVL is CHARACTER*1 *> = 'N': do not compute the left generalized eigenvectors; *> = 'V': compute the left generalized eigenvectors. *> \endverbatim *> *> \param[in] JOBVR *> \verbatim *> JOBVR is CHARACTER*1 *> = 'N': do not compute the right generalized eigenvectors; *> = 'V': compute the right generalized eigenvectors. *> \endverbatim *> *> \param[in] SENSE *> \verbatim *> SENSE is CHARACTER*1 *> Determines which reciprocal condition numbers are computed. *> = 'N': none are computed; *> = 'E': computed for eigenvalues only; *> = 'V': computed for eigenvectors only; *> = 'B': computed for eigenvalues and eigenvectors. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A, B, VL, and VR. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is REAL array, dimension (LDA, N) *> On entry, the matrix A in the pair (A,B). *> On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' *> or both, then A contains the first part of the real Schur *> form of the "balanced" versions of the input A and B. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A. LDA >= max(1,N). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is REAL array, dimension (LDB, N) *> On entry, the matrix B in the pair (A,B). *> On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' *> or both, then B contains the second part of the real Schur *> form of the "balanced" versions of the input A and B. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] ALPHAR *> \verbatim *> ALPHAR is REAL array, dimension (N) *> \endverbatim *> *> \param[out] ALPHAI *> \verbatim *> ALPHAI is REAL array, dimension (N) *> \endverbatim *> *> \param[out] BETA *> \verbatim *> BETA is REAL array, dimension (N) *> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will *> be the generalized eigenvalues. If ALPHAI(j) is zero, then *> the j-th eigenvalue is real; if positive, then the j-th and *> (j+1)-st eigenvalues are a complex conjugate pair, with *> ALPHAI(j+1) negative. *> *> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) *> may easily over- or underflow, and BETA(j) may even be zero. *> Thus, the user should avoid naively computing the ratio *> ALPHA/BETA. However, ALPHAR and ALPHAI will be always less *> than and usually comparable with norm(A) in magnitude, and *> BETA always less than and usually comparable with norm(B). *> \endverbatim *> *> \param[out] VL *> \verbatim *> VL is REAL array, dimension (LDVL,N) *> If JOBVL = 'V', the left eigenvectors u(j) are stored one *> after another in the columns of VL, in the same order as *> their eigenvalues. If the j-th eigenvalue is real, then *> u(j) = VL(:,j), the j-th column of VL. If the j-th and *> (j+1)-th eigenvalues form a complex conjugate pair, then *> u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). *> Each eigenvector will be scaled so the largest component have *> abs(real part) + abs(imag. part) = 1. *> Not referenced if JOBVL = 'N'. *> \endverbatim *> *> \param[in] LDVL *> \verbatim *> LDVL is INTEGER *> The leading dimension of the matrix VL. LDVL >= 1, and *> if JOBVL = 'V', LDVL >= N. *> \endverbatim *> *> \param[out] VR *> \verbatim *> VR is REAL array, dimension (LDVR,N) *> If JOBVR = 'V', the right eigenvectors v(j) are stored one *> after another in the columns of VR, in the same order as *> their eigenvalues. If the j-th eigenvalue is real, then *> v(j) = VR(:,j), the j-th column of VR. If the j-th and *> (j+1)-th eigenvalues form a complex conjugate pair, then *> v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). *> Each eigenvector will be scaled so the largest component have *> abs(real part) + abs(imag. part) = 1. *> Not referenced if JOBVR = 'N'. *> \endverbatim *> *> \param[in] LDVR *> \verbatim *> LDVR is INTEGER *> The leading dimension of the matrix VR. LDVR >= 1, and *> if JOBVR = 'V', LDVR >= N. *> \endverbatim *> *> \param[out] ILO *> \verbatim *> ILO is INTEGER *> \endverbatim *> *> \param[out] IHI *> \verbatim *> IHI is INTEGER *> ILO and IHI are integer values such that on exit *> A(i,j) = 0 and B(i,j) = 0 if i > j and *> j = 1,...,ILO-1 or i = IHI+1,...,N. *> If BALANC = 'N' or 'S', ILO = 1 and IHI = N. *> \endverbatim *> *> \param[out] LSCALE *> \verbatim *> LSCALE is REAL array, dimension (N) *> Details of the permutations and scaling factors applied *> to the left side of A and B. If PL(j) is the index of the *> row interchanged with row j, and DL(j) is the scaling *> factor applied to row j, then *> LSCALE(j) = PL(j) for j = 1,...,ILO-1 *> = DL(j) for j = ILO,...,IHI *> = PL(j) for j = IHI+1,...,N. *> The order in which the interchanges are made is N to IHI+1, *> then 1 to ILO-1. *> \endverbatim *> *> \param[out] RSCALE *> \verbatim *> RSCALE is REAL array, dimension (N) *> Details of the permutations and scaling factors applied *> to the right side of A and B. If PR(j) is the index of the *> column interchanged with column j, and DR(j) is the scaling *> factor applied to column j, then *> RSCALE(j) = PR(j) for j = 1,...,ILO-1 *> = DR(j) for j = ILO,...,IHI *> = PR(j) for j = IHI+1,...,N *> The order in which the interchanges are made is N to IHI+1, *> then 1 to ILO-1. *> \endverbatim *> *> \param[out] ABNRM *> \verbatim *> ABNRM is REAL *> The one-norm of the balanced matrix A. *> \endverbatim *> *> \param[out] BBNRM *> \verbatim *> BBNRM is REAL *> The one-norm of the balanced matrix B. *> \endverbatim *> *> \param[out] RCONDE *> \verbatim *> RCONDE is REAL array, dimension (N) *> If SENSE = 'E' or 'B', the reciprocal condition numbers of *> the eigenvalues, stored in consecutive elements of the array. *> For a complex conjugate pair of eigenvalues two consecutive *> elements of RCONDE are set to the same value. Thus RCONDE(j), *> RCONDV(j), and the j-th columns of VL and VR all correspond *> to the j-th eigenpair. *> If SENSE = 'N' or 'V', RCONDE is not referenced. *> \endverbatim *> *> \param[out] RCONDV *> \verbatim *> RCONDV is REAL array, dimension (N) *> If SENSE = 'V' or 'B', the estimated reciprocal condition *> numbers of the eigenvectors, stored in consecutive elements *> of the array. For a complex eigenvector two consecutive *> elements of RCONDV are set to the same value. If the *> eigenvalues cannot be reordered to compute RCONDV(j), *> RCONDV(j) is set to 0; this can only occur when the true *> value would be very small anyway. *> If SENSE = 'N' or 'E', RCONDV is not referenced. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= max(1,2*N). *> If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V', *> LWORK >= max(1,6*N). *> If SENSE = 'E', LWORK >= max(1,10*N). *> If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (N+6) *> If SENSE = 'E', IWORK is not referenced. *> \endverbatim *> *> \param[out] BWORK *> \verbatim *> BWORK is LOGICAL array, dimension (N) *> If SENSE = 'N', BWORK is not referenced. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value. *> = 1,...,N: *> The QZ iteration failed. No eigenvectors have been *> calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) *> should be correct for j=INFO+1,...,N. *> > N: =N+1: other than QZ iteration failed in SHGEQZ. *> =N+2: error return from STGEVC. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup ggevx * *> \par Further Details: * ===================== *> *> \verbatim *> *> Balancing a matrix pair (A,B) includes, first, permuting rows and *> columns to isolate eigenvalues, second, applying diagonal similarity *> transformation to the rows and columns to make the rows and columns *> as close in norm as possible. The computed reciprocal condition *> numbers correspond to the balanced matrix. Permuting rows and columns *> will not change the condition numbers (in exact arithmetic) but *> diagonal scaling will. For further explanation of balancing, see *> section 4.11.1.2 of LAPACK Users' Guide. *> *> An approximate error bound on the chordal distance between the i-th *> computed generalized eigenvalue w and the corresponding exact *> eigenvalue lambda is *> *> chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) *> *> An approximate error bound for the angle between the i-th computed *> eigenvector VL(i) or VR(i) is given by *> *> EPS * norm(ABNRM, BBNRM) / DIF(i). *> *> For further explanation of the reciprocal condition numbers RCONDE *> and RCONDV, see section 4.11 of LAPACK User's Guide. *> \endverbatim *> * ===================================================================== SUBROUTINE SGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, $ LDB, $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO, $ IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, $ RCONDV, WORK, LWORK, IWORK, BWORK, INFO ) * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER BALANC, JOBVL, JOBVR, SENSE INTEGER IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N REAL ABNRM, BBNRM * .. * .. Array Arguments .. LOGICAL BWORK( * ) INTEGER IWORK( * ) REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), $ B( LDB, * ), BETA( * ), LSCALE( * ), $ RCONDE( * ), RCONDV( * ), RSCALE( * ), $ VL( LDVL, * ), VR( LDVR, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL, $ PAIR, WANTSB, WANTSE, WANTSN, WANTSV CHARACTER CHTEMP INTEGER I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS, $ ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK, $ MINWRK, MM REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, $ SMLNUM, TEMP * .. * .. Local Arrays .. LOGICAL LDUMMA( 1 ) * .. * .. External Subroutines .. EXTERNAL SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, $ SLACPY, $ SLASCL, SLASET, SORGQR, SORMQR, STGEVC, STGSNA, $ XERBLA * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV REAL SLAMCH, SLANGE, SROUNDUP_LWORK EXTERNAL LSAME, ILAENV, SLAMCH, $ SLANGE, SROUNDUP_LWORK * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT * .. * .. Executable Statements .. * * Decode the input arguments * IF( LSAME( JOBVL, 'N' ) ) THEN IJOBVL = 1 ILVL = .FALSE. ELSE IF( LSAME( JOBVL, 'V' ) ) THEN IJOBVL = 2 ILVL = .TRUE. ELSE IJOBVL = -1 ILVL = .FALSE. END IF * IF( LSAME( JOBVR, 'N' ) ) THEN IJOBVR = 1 ILVR = .FALSE. ELSE IF( LSAME( JOBVR, 'V' ) ) THEN IJOBVR = 2 ILVR = .TRUE. ELSE IJOBVR = -1 ILVR = .FALSE. END IF ILV = ILVL .OR. ILVR * NOSCL = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' ) WANTSN = LSAME( SENSE, 'N' ) WANTSE = LSAME( SENSE, 'E' ) WANTSV = LSAME( SENSE, 'V' ) WANTSB = LSAME( SENSE, 'B' ) * * Test the input arguments * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) IF( .NOT.( NOSCL .OR. LSAME( BALANC, 'S' ) .OR. $ LSAME( BALANC, 'B' ) ) ) THEN INFO = -1 ELSE IF( IJOBVL.LE.0 ) THEN INFO = -2 ELSE IF( IJOBVR.LE.0 ) THEN INFO = -3 ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) ) $ THEN INFO = -4 ELSE IF( N.LT.0 ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -9 ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN INFO = -14 ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN INFO = -16 END IF * * Compute workspace * (Note: Comments in the code beginning "Workspace:" describe the * minimal amount of workspace needed at that point in the code, * as well as the preferred amount for good performance. * NB refers to the optimal block size for the immediately * following subroutine, as returned by ILAENV. The workspace is * computed assuming ILO = 1 and IHI = N, the worst case.) * IF( INFO.EQ.0 ) THEN IF( N.EQ.0 ) THEN MINWRK = 1 MAXWRK = 1 ELSE IF( NOSCL .AND. .NOT.ILV ) THEN MINWRK = 2*N ELSE MINWRK = 6*N END IF IF( WANTSE ) THEN MINWRK = 10*N ELSE IF( WANTSV .OR. WANTSB ) THEN MINWRK = 2*N*( N + 4 ) + 16 END IF MAXWRK = MINWRK MAXWRK = MAX( MAXWRK, $ N + N*ILAENV( 1, 'SGEQRF', ' ', N, 1, N, $ 0 ) ) MAXWRK = MAX( MAXWRK, $ N + N*ILAENV( 1, 'SORMQR', ' ', N, 1, N, $ 0 ) ) IF( ILVL ) THEN MAXWRK = MAX( MAXWRK, N + $ N*ILAENV( 1, 'SORGQR', ' ', N, 1, N, $ 0 ) ) END IF END IF WORK( 1 ) = SROUNDUP_LWORK(MAXWRK) * IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN INFO = -26 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGGEVX', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * * Get machine constants * EPS = SLAMCH( 'P' ) SMLNUM = SLAMCH( 'S' ) BIGNUM = ONE / SMLNUM SMLNUM = SQRT( SMLNUM ) / EPS BIGNUM = ONE / SMLNUM * * Scale A if max element outside range [SMLNUM,BIGNUM] * ANRM = SLANGE( 'M', N, N, A, LDA, WORK ) ILASCL = .FALSE. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN ANRMTO = SMLNUM ILASCL = .TRUE. ELSE IF( ANRM.GT.BIGNUM ) THEN ANRMTO = BIGNUM ILASCL = .TRUE. END IF IF( ILASCL ) $ CALL SLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR ) * * Scale B if max element outside range [SMLNUM,BIGNUM] * BNRM = SLANGE( 'M', N, N, B, LDB, WORK ) ILBSCL = .FALSE. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN BNRMTO = SMLNUM ILBSCL = .TRUE. ELSE IF( BNRM.GT.BIGNUM ) THEN BNRMTO = BIGNUM ILBSCL = .TRUE. END IF IF( ILBSCL ) $ CALL SLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR ) * * Permute and/or balance the matrix pair (A,B) * (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) * CALL SGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, $ RSCALE, $ WORK, IERR ) * * Compute ABNRM and BBNRM * ABNRM = SLANGE( '1', N, N, A, LDA, WORK( 1 ) ) IF( ILASCL ) THEN WORK( 1 ) = ABNRM CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, WORK( 1 ), 1, $ IERR ) ABNRM = WORK( 1 ) END IF * BBNRM = SLANGE( '1', N, N, B, LDB, WORK( 1 ) ) IF( ILBSCL ) THEN WORK( 1 ) = BBNRM CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, WORK( 1 ), 1, $ IERR ) BBNRM = WORK( 1 ) END IF * * Reduce B to triangular form (QR decomposition of B) * (Workspace: need N, prefer N*NB ) * IROWS = IHI + 1 - ILO IF( ILV .OR. .NOT.WANTSN ) THEN ICOLS = N + 1 - ILO ELSE ICOLS = IROWS END IF ITAU = 1 IWRK = ITAU + IROWS CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ), $ WORK( IWRK ), LWORK+1-IWRK, IERR ) * * Apply the orthogonal transformation to A * (Workspace: need N, prefer N*NB) * CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB, $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ), $ LWORK+1-IWRK, IERR ) * * Initialize VL and/or VR * (Workspace: need N, prefer N*NB) * IF( ILVL ) THEN CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL ) IF( IROWS.GT.1 ) THEN CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB, $ VL( ILO+1, ILO ), LDVL ) END IF CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL, $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR ) END IF * IF( ILVR ) $ CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR ) * * Reduce to generalized Hessenberg form * (Workspace: none needed) * IF( ILV .OR. .NOT.WANTSN ) THEN * * Eigenvectors requested -- work on whole matrix. * CALL SGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL, $ LDVL, VR, LDVR, IERR ) ELSE CALL SGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA, $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR ) END IF * * Perform QZ algorithm (Compute eigenvalues, and optionally, the * Schur forms and Schur vectors) * (Workspace: need N) * IF( ILV .OR. .NOT.WANTSN ) THEN CHTEMP = 'S' ELSE CHTEMP = 'E' END IF * CALL SHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, $ LWORK, IERR ) IF( IERR.NE.0 ) THEN IF( IERR.GT.0 .AND. IERR.LE.N ) THEN INFO = IERR ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN INFO = IERR - N ELSE INFO = N + 1 END IF GO TO 130 END IF * * Compute Eigenvectors and estimate condition numbers if desired * (Workspace: STGEVC: need 6*N * STGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B', * need N otherwise ) * IF( ILV .OR. .NOT.WANTSN ) THEN IF( ILV ) THEN IF( ILVL ) THEN IF( ILVR ) THEN CHTEMP = 'B' ELSE CHTEMP = 'L' END IF ELSE CHTEMP = 'R' END IF * CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, $ LDVL, VR, LDVR, N, IN, WORK, IERR ) IF( IERR.NE.0 ) THEN INFO = N + 2 GO TO 130 END IF END IF * IF( .NOT.WANTSN ) THEN * * compute eigenvectors (STGEVC) and estimate condition * numbers (STGSNA). Note that the definition of the condition * number is not invariant under transformation (u,v) to * (Q*u, Z*v), where (u,v) are eigenvectors of the generalized * Schur form (S,T), Q and Z are orthogonal matrices. In order * to avoid using extra 2*N*N workspace, we have to recalculate * eigenvectors and estimate one condition numbers at a time. * PAIR = .FALSE. DO 20 I = 1, N * IF( PAIR ) THEN PAIR = .FALSE. GO TO 20 END IF MM = 1 IF( I.LT.N ) THEN IF( A( I+1, I ).NE.ZERO ) THEN PAIR = .TRUE. MM = 2 END IF END IF * DO 10 J = 1, N BWORK( J ) = .FALSE. 10 CONTINUE IF( MM.EQ.1 ) THEN BWORK( I ) = .TRUE. ELSE IF( MM.EQ.2 ) THEN BWORK( I ) = .TRUE. BWORK( I+1 ) = .TRUE. END IF * IWRK = MM*N + 1 IWRK1 = IWRK + MM*N * * Compute a pair of left and right eigenvectors. * (compute workspace: need up to 4*N + 6*N) * IF( WANTSE .OR. WANTSB ) THEN CALL STGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB, $ WORK( 1 ), N, WORK( IWRK ), N, MM, M, $ WORK( IWRK1 ), IERR ) IF( IERR.NE.0 ) THEN INFO = N + 2 GO TO 130 END IF END IF * CALL STGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB, $ WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ), $ RCONDV( I ), MM, M, WORK( IWRK1 ), $ LWORK-IWRK1+1, IWORK, IERR ) * 20 CONTINUE END IF END IF * * Undo balancing on VL and VR and normalization * (Workspace: none needed) * IF( ILVL ) THEN CALL SGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, $ VL, $ LDVL, IERR ) * DO 70 JC = 1, N IF( ALPHAI( JC ).LT.ZERO ) $ GO TO 70 TEMP = ZERO IF( ALPHAI( JC ).EQ.ZERO ) THEN DO 30 JR = 1, N TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) ) 30 CONTINUE ELSE DO 40 JR = 1, N TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+ $ ABS( VL( JR, JC+1 ) ) ) 40 CONTINUE END IF IF( TEMP.LT.SMLNUM ) $ GO TO 70 TEMP = ONE / TEMP IF( ALPHAI( JC ).EQ.ZERO ) THEN DO 50 JR = 1, N VL( JR, JC ) = VL( JR, JC )*TEMP 50 CONTINUE ELSE DO 60 JR = 1, N VL( JR, JC ) = VL( JR, JC )*TEMP VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP 60 CONTINUE END IF 70 CONTINUE END IF IF( ILVR ) THEN CALL SGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, $ VR, $ LDVR, IERR ) DO 120 JC = 1, N IF( ALPHAI( JC ).LT.ZERO ) $ GO TO 120 TEMP = ZERO IF( ALPHAI( JC ).EQ.ZERO ) THEN DO 80 JR = 1, N TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) ) 80 CONTINUE ELSE DO 90 JR = 1, N TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+ $ ABS( VR( JR, JC+1 ) ) ) 90 CONTINUE END IF IF( TEMP.LT.SMLNUM ) $ GO TO 120 TEMP = ONE / TEMP IF( ALPHAI( JC ).EQ.ZERO ) THEN DO 100 JR = 1, N VR( JR, JC ) = VR( JR, JC )*TEMP 100 CONTINUE ELSE DO 110 JR = 1, N VR( JR, JC ) = VR( JR, JC )*TEMP VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP 110 CONTINUE END IF 120 CONTINUE END IF * * Undo scaling if necessary * 130 CONTINUE * IF( ILASCL ) THEN CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, $ IERR ) CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, $ IERR ) END IF * IF( ILBSCL ) THEN CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR ) END IF * WORK( 1 ) = SROUNDUP_LWORK(MAXWRK) RETURN * * End of SGGEVX * END