numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/sggqrf.f | 9428B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
*> \brief \b SGGQRF * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SGGQRF + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggqrf.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggqrf.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggqrf.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, * LWORK, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDB, LWORK, M, N, P * .. * .. Array Arguments .. * REAL A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ), * $ WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SGGQRF computes a generalized QR factorization of an N-by-M matrix A *> and an N-by-P matrix B: *> *> A = Q*R, B = Q*T*Z, *> *> where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal *> matrix, and R and T assume one of the forms: *> *> if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N, *> ( 0 ) N-M N M-N *> M *> *> where R11 is upper triangular, and *> *> if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P, *> P-N N ( T21 ) P *> P *> *> where T12 or T21 is upper triangular. *> *> In particular, if B is square and nonsingular, the GQR factorization *> of A and B implicitly gives the QR factorization of inv(B)*A: *> *> inv(B)*A = Z**T*(inv(T)*R) *> *> where inv(B) denotes the inverse of the matrix B, and Z**T denotes the *> transpose of the matrix Z. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows of the matrices A and B. N >= 0. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of columns of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] P *> \verbatim *> P is INTEGER *> The number of columns of the matrix B. P >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is REAL array, dimension (LDA,M) *> On entry, the N-by-M matrix A. *> On exit, the elements on and above the diagonal of the array *> contain the min(N,M)-by-M upper trapezoidal matrix R (R is *> upper triangular if N >= M); the elements below the diagonal, *> with the array TAUA, represent the orthogonal matrix Q as a *> product of min(N,M) elementary reflectors (see Further *> Details). *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] TAUA *> \verbatim *> TAUA is REAL array, dimension (min(N,M)) *> The scalar factors of the elementary reflectors which *> represent the orthogonal matrix Q (see Further Details). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is REAL array, dimension (LDB,P) *> On entry, the N-by-P matrix B. *> On exit, if N <= P, the upper triangle of the subarray *> B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; *> if N > P, the elements on and above the (N-P)-th subdiagonal *> contain the N-by-P upper trapezoidal matrix T; the remaining *> elements, with the array TAUB, represent the orthogonal *> matrix Z as a product of elementary reflectors (see Further *> Details). *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] TAUB *> \verbatim *> TAUB is REAL array, dimension (min(N,P)) *> The scalar factors of the elementary reflectors which *> represent the orthogonal matrix Z (see Further Details). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= max(1,N,M,P). *> For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), *> where NB1 is the optimal blocksize for the QR factorization *> of an N-by-M matrix, NB2 is the optimal blocksize for the *> RQ factorization of an N-by-P matrix, and NB3 is the optimal *> blocksize for a call of SORMQR. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup ggqrf * *> \par Further Details: * ===================== *> *> \verbatim *> *> The matrix Q is represented as a product of elementary reflectors *> *> Q = H(1) H(2) . . . H(k), where k = min(n,m). *> *> Each H(i) has the form *> *> H(i) = I - taua * v * v**T *> *> where taua is a real scalar, and v is a real vector with *> v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), *> and taua in TAUA(i). *> To form Q explicitly, use LAPACK subroutine SORGQR. *> To use Q to update another matrix, use LAPACK subroutine SORMQR. *> *> The matrix Z is represented as a product of elementary reflectors *> *> Z = H(1) H(2) . . . H(k), where k = min(n,p). *> *> Each H(i) has the form *> *> H(i) = I - taub * v * v**T *> *> where taub is a real scalar, and v is a real vector with *> v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in *> B(n-k+i,1:p-k+i-1), and taub in TAUB(i). *> To form Z explicitly, use LAPACK subroutine SORGRQ. *> To use Z to update another matrix, use LAPACK subroutine SORMRQ. *> \endverbatim *> * ===================================================================== SUBROUTINE SGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, $ LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDB, LWORK, M, N, P * .. * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ), $ WORK( * ) * .. * * ===================================================================== * * .. Local Scalars .. LOGICAL LQUERY INTEGER LOPT, LWKOPT, NB, NB1, NB2, NB3 * .. * .. External Subroutines .. EXTERNAL SGEQRF, SGERQF, SORMQR, XERBLA * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV REAL SROUNDUP_LWORK EXTERNAL SROUNDUP_LWORK * .. * .. Intrinsic Functions .. INTRINSIC INT, MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 NB1 = ILAENV( 1, 'SGEQRF', ' ', N, M, -1, -1 ) NB2 = ILAENV( 1, 'SGERQF', ' ', N, P, -1, -1 ) NB3 = ILAENV( 1, 'SORMQR', ' ', N, M, P, -1 ) NB = MAX( NB1, NB2, NB3 ) LWKOPT = MAX( 1, MAX( N, M, P )*NB ) WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * LQUERY = ( LWORK.EQ.-1 ) IF( N.LT.0 ) THEN INFO = -1 ELSE IF( M.LT.0 ) THEN INFO = -2 ELSE IF( P.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 ELSE IF( LWORK.LT.MAX( 1, N, M, P ) .AND. .NOT.LQUERY ) THEN INFO = -11 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGGQRF', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * QR factorization of N-by-M matrix A: A = Q*R * CALL SGEQRF( N, M, A, LDA, TAUA, WORK, LWORK, INFO ) LOPT = INT( WORK( 1 ) ) * * Update B := Q**T*B. * CALL SORMQR( 'Left', 'Transpose', N, P, MIN( N, M ), A, LDA, $ TAUA, $ B, LDB, WORK, LWORK, INFO ) LOPT = MAX( LOPT, INT( WORK( 1 ) ) ) * * RQ factorization of N-by-P matrix B: B = T*Z. * CALL SGERQF( N, P, B, LDB, TAUB, WORK, LWORK, INFO ) LWKOPT = MAX( LOPT, INT( WORK( 1 ) ) ) * WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * * End of SGGQRF * END